Source Code Cross Referenced for GenericSorter.java in  » XML » XPath-Saxon » net » sf » saxon » sort » Java Source Code / Java DocumentationJava Source Code and Java Documentation

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » XML » XPath Saxon » net.sf.saxon.sort 
Source Cross Referenced  Class Diagram Java Document (Java Doc) 


001:        package net.sf.saxon.sort;
002:
003:        /*
004:         Copyright ? 1999 CERN - European Organization for Nuclear Research.
005:         Permission to use, copy, modify, distribute and sell this software and its documentation for any purpose
006:         is hereby granted without fee, provided that the above copyright notice appear in all copies and
007:         that both that copyright notice and this permission notice appear in supporting documentation.
008:         CERN makes no representations about the suitability of this software for any purpose.
009:         It is provided "as is" without expressed or implied warranty.
010:         */
011:
012:        /**
013:         * Modified by Michael Kay to use the Saxon Sortable interface rather than a separate IntComparator and Swapper
014:         */
015:
016:        /**
017:         Generically sorts arbitrary shaped data (for example multiple arrays, 1,2 or 3-d matrices, and so on) using a
018:         quicksort or mergesort. This class addresses two problems, namely
019:         <ul>
020:         <li><i>Sorting multiple arrays in sync</i>
021:         <li><i>Sorting by multiple sorting criteria</i> (primary, secondary, tertiary,
022:         ...)
023:         </ul>
024:         <h4>Sorting multiple arrays in sync</h4>
025:         <p>
026:         Assume we have three arrays X, Y and Z. We want to sort all three arrays by
027:         X (or some arbitrary comparison function). For example, we have<br>
028:         <tt>X=[3, 2, 1], Y=[3.0, 2.0, 1.0], Z=[6.0, 7.0, 8.0]</tt>. The output should
029:         be <tt><br>
030:         X=[1, 2, 3], Y=[1.0, 2.0, 3.0], Z=[8.0, 7.0, 6.0]</tt>. </p>
031:         <p>How can we achive this? Here are several alternatives. We could ... </p>
032:         <ol>
033:         <li> make a list of Point3D objects, sort the list as desired using a comparison
034:         function, then copy the results back into X, Y and Z. The classic object-oriented
035:         way. </li>
036:         <li>make an index list [0,1,2,...,N-1], sort the index list using a comparison function,
037:         then reorder the elements of X,Y,Z as defined by the index list. Reordering
038:         cannot be done in-place, so we need to copy X to some temporary array, then
039:         copy in the right order back from the temporary into X. Same for Y and Z.
040:         </li>
041:         <li> use a generic quicksort or mergesort which, whenever two elements in X are swapped,
042:         also swaps the corresponding elements in Y and Z. </li>
043:         </ol>
044:         Alternatives 1 and 2 involve quite a lot of copying and allocate significant amounts
045:         of temporary memory. Alternative 3 involves more swapping, more polymorphic message dispatches, no copying and does not need any temporary memory.
046:         <p> This class implements alternative 3. It operates on arbitrary shaped data.
047:         In fact, it has no idea what kind of data it is sorting. Comparisons and swapping
048:         are delegated to user provided objects which know their data and can do the
049:         job.
050:         <p> Lets call the generic data <tt>g</tt> (it may be one array, three linked lists
051:         or whatever). This class takes a user comparison function operating on two indexes
052:         <tt>(a,b)</tt>, namely an {@link Sortable}. The comparison function determines
053:         whether <tt>g[a]</tt> is equal, less or greater than <tt>g[b]</tt>. The sort,
054:         depending on its implementation, can decide to swap the data at index <tt>a</tt>
055:         with the data at index <tt>b</tt>. It calls a user provided {@link Sortable}
056:         object that knows how to swap the data of these indexes.
057:         <p>The following snippet shows how to solve the problem.
058:         <table>
059:         <td class="PRE">
060:         <pre>
061:         final int[] x;
062:         final double[] y;
063:         final double[] z;
064:
065:         x = new int[]    {3,   2,   1  };
066:         y = new double[] {3.0, 2.0, 1.0};
067:         z = new double[] {6.0, 7.0, 8.0};
068:
069:
070:         // this one knows how to swap two indexes (a,b)
071:         Swapper swapper = new Swapper() {
072:         &nbsp;&nbsp;&nbsp;public void swap(int a, int b) {
073:         &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;int t1;	double t2, t3;
074:         &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;t1 = x[a]; x[a] = x[b];	x[b] = t1;
075:         &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;t2 = y[a]; y[a] = y[b]; y[b] = t2;
076:         &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;t3 = z[a]; z[a] = z[b];	z[b] = t3;
077:         &nbsp;&nbsp;&nbsp;}
078:         };
079:         // simple comparison: compare by X and ignore Y,Z<br>
080:         IntComparator comp = new IntComparator() {
081:         &nbsp;&nbsp;&nbsp;public int compare(int a, int b) {
082:         &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;return x[a]==x[b] ? 0 : (x[a]&lt;x[b] ? -1 : 1);
083:         &nbsp;&nbsp;&nbsp;}
084:         };
085:
086:         System.out.println("before:");
087:         System.out.println("X="+Arrays.toString(x));
088:         System.out.println("Y="+Arrays.toString(y));
089:         System.out.println("Z="+Arrays.toString(z));
090:
091:         GenericSorting.quickSort(0, X.length, comp, swapper);
092:         // GenericSorting.mergeSort(0, X.length, comp, swapper);
093:
094:         System.out.println("after:");
095:         System.out.println("X="+Arrays.toString(x));
096:         System.out.println("Y="+Arrays.toString(y));
097:         System.out.println("Z="+Arrays.toString(z));
098:         </pre>
099:         </td>
100:         </table>
101:         <h4>Sorting by multiple sorting criterias (primary, secondary, tertiary, ...)</h4>
102:         <p>Assume again we have three arrays X, Y and Z. Now we want to sort all three
103:         arrays, primarily by Y, secondarily by Z (if Y elements are equal). For example,
104:         we have<br>
105:         <tt>X=[6, 7, 8, 9], Y=[3.0, 2.0, 1.0, 3.0], Z=[5.0, 4.0, 4.0, 1.0]</tt>. The
106:         output should be <tt><br>
107:         X=[8, 7, 9, 6], Y=[1.0, 2.0, 3.0, 3.0], Z=[4.0, 4.0, 1.0, 5.0]</tt>. </p>
108:         <p>Here is how to solve the problem. All code in the above example stays the same,
109:         except that we modify the comparison function as follows</p>
110:         <table>
111:         <td class="PRE">
112:         <pre>
113:         //compare by Y, if that doesn't help, reside to Z
114:         IntComparator comp = new IntComparator() {
115:         &nbsp;&nbsp;&nbsp;public int compare(int a, int b) {
116:         &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;if (y[a]==y[b]) return z[a]==z[b] ? 0 : (z[a]&lt;z[b] ? -1 : 1);
117:         &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;return y[a]&lt;y[b] ? -1 : 1;
118:         &nbsp;&nbsp;&nbsp;}
119:         };
120:         </pre>
121:         </td>
122:         </table>
123:
124:         <h4>Notes</h4>
125:         <p></p>
126:         <p> Sorts involving floating point data and not involving comparators, like, for
127:         example provided in the JDK {@link java.util.Arrays} and in the Colt
128:         (cern.colt.Sorting) handle floating point numbers in special ways to guarantee
129:         that NaN's are swapped to the end and -0.0 comes before 0.0. Methods delegating
130:         to comparators cannot do this. They rely on the comparator. Thus, if such boundary
131:         cases are an issue for the application at hand, comparators explicitly need
132:         to implement -0.0 and NaN aware comparisons. Remember: <tt>-0.0 < 0.0 == false</tt>,
133:         <tt>(-0.0 == 0.0) == true</tt>, as well as <tt>5.0 &lt; Double.NaN == false</tt>,
134:         <tt>5.0 &gt; Double.NaN == false</tt>. Same for <tt>float</tt>.
135:         <h4>Implementation </h4>
136:         <p>The quicksort is a derivative of the JDK 1.2 V1.26 algorithms (which are, in
137:         turn, based on Bentley's and McIlroy's fine work).
138:         The mergesort is a derivative of the JAL algorithms, with optimisations taken from the JDK algorithms.
139:         Both quick and merge sort are "in-place", i.e. do not allocate temporary memory (helper arrays).
140:         Mergesort is <i>stable</i> (by definition), while quicksort is not.
141:         A stable sort is, for example, helpful, if matrices are sorted successively
142:         by multiple columns. It preserves the relative position of equal elements.
143:
144:         @author wolfgang.hoschek@cern.ch
145:         @version 1.0, 03-Jul-99
146:         */
147:        public class GenericSorter extends Object {
148:
149:            private static final int SMALL = 7;
150:            private static final int MEDIUM = 7;
151:            private static final int LARGE = 40;
152:
153:            /**
154:             * Makes this class non instantiable, but still let's others inherit from it.
155:             */
156:            protected GenericSorter() {
157:            }
158:
159:            /**
160:             * Sorts the specified range of elements according
161:             * to the order induced by the specified comparator.  All elements in the
162:             * range must be <i>mutually comparable</i> by the specified comparator
163:             * (that is, <tt>c.compare(a, b)</tt> must not throw an
164:             * exception for any indexes <tt>a</tt> and
165:             * <tt>b</tt> in the range).<p>
166:             *
167:             * The sorting algorithm is a tuned quicksort,
168:             * adapted from Jon L. Bentley and M. Douglas McIlroy's "Engineering a
169:             * Sort Function", Software-Practice and Experience, Vol. 23(11)
170:             * P. 1249-1265 (November 1993).  For details, see
171:             * http://citeseer.ist.psu.edu/bentley93engineering.html.
172:             * This algorithm offers n*log(n) performance on many data sets that cause other
173:             * quicksorts to degrade to quadratic performance.
174:             *
175:             * @param fromIndex the index of the first element (inclusive) to be sorted.
176:             * @param toIndex the index of the last element (exclusive) to be sorted.
177:             * @param c the comparator to determine the order of the generic data;
178:             *   an object that knows how to swap the elements at any two indexes (a,b).
179:             *
180:             */
181:            public static void quickSort(int fromIndex, int toIndex, Sortable c) {
182:                quickSort1(fromIndex, toIndex - fromIndex, c);
183:            }
184:
185:            /**
186:             * Sorts the specified sub-array into ascending order.
187:             */
188:            private static void quickSort1(int off, int len, Sortable comp) {
189:                // Insertion sort on smallest arrays
190:                if (len < SMALL) {
191:                    for (int i = off; i < len + off; i++)
192:                        for (int j = i; j > off && (comp.compare(j - 1, j) > 0); j--) {
193:                            comp.swap(j, j - 1);
194:                        }
195:                    return;
196:                }
197:
198:                // Choose a partition element, v
199:                int m = off + (len >>> 1); // len/2;       // Small arrays, middle element
200:
201:                if (len > MEDIUM) {
202:                    int l = off;
203:                    int n = off + len - 1;
204:                    if (len > LARGE) { // Big arrays, pseudomedian of 9
205:                        int s = len >>> 3; // len/8;
206:                        l = med3(l, l + s, l + 2 * s, comp);
207:                        m = med3(m - s, m, m + s, comp);
208:                        n = med3(n - 2 * s, n - s, n, comp);
209:                    }
210:                    //			m = med3(l, m, n, comp); // Mid-size, med of 3
211:                    // manually inlined (most time is spent near the leafs of the recursion tree)
212:                    //a = comp.compare(l,m);
213:                    //b = comp.compare(l,n);
214:                    int c = comp.compare(m, n);
215:                    m = (comp.compare(l, m) < 0 ? (c < 0 ? m : comp.compare(l,
216:                            n) < 0 ? n : l) : (c > 0 ? m
217:                            : comp.compare(l, n) > 0 ? n : l));
218:                }
219:                //long v = x[m];
220:
221:                // Establish Invariant: v* (<v)* (>v)* v*
222:                int a = off, b = a, c = off + len - 1, d = c;
223:                while (true) {
224:                    int comparison;
225:                    while (b <= c && ((comparison = comp.compare(b, m)) <= 0)) {
226:                        if (comparison == 0) {
227:                            if (a == m)
228:                                m = b; // pivot is moving target; DELTA to JDK !!!
229:                            else if (b == m)
230:                                m = a; // pivot is moving target; DELTA to JDK !!!
231:                            comp.swap(a++, b);
232:                        }
233:                        b++;
234:                    }
235:                    while (c >= b && ((comparison = comp.compare(c, m)) >= 0)) {
236:                        if (comparison == 0) {
237:                            if (c == m)
238:                                m = d; // pivot is moving target; DELTA to JDK !!!
239:                            else if (d == m)
240:                                m = c; // pivot is moving target; DELTA to JDK !!!
241:                            comp.swap(c, d--);
242:                        }
243:                        c--;
244:                    }
245:                    if (b > c)
246:                        break;
247:                    if (b == m)
248:                        m = d; // pivot is moving target; DELTA to JDK !!!
249:                    else if (c == m)
250:                        m = c; // pivot is moving target; DELTA to JDK !!!
251:                    comp.swap(b++, c--);
252:                }
253:
254:                // Swap partition elements back to middle
255:
256:                int s = Math.min(a - off, b - a);
257:                // vecswap(swapper, off, b-s, s);
258:                // manually inlined
259:                int aa = off;
260:                int bb = b - s;
261:                while (--s >= 0)
262:                    comp.swap(aa++, bb++);
263:                int n = off + len;
264:                s = Math.min(d - c, n - d - 1);
265:                // vecswap(swapper, b,   n-s, s); // manually inlined
266:                aa = b;
267:                bb = n - s;
268:                while (--s >= 0)
269:                    comp.swap(aa++, bb++);
270:
271:                // Recursively sort non-partition-elements
272:                if ((s = b - a) > 1)
273:                    quickSort1(off, s, comp);
274:                if ((s = d - c) > 1)
275:                    quickSort1(n - s, s, comp);
276:            }
277:
278:            /**
279:             * Returns the index of the median of the three indexed elements.
280:             */
281:            private static int med3(int a, int b, int c, Sortable comp) {
282:                int bc = comp.compare(b, c);
283:                return (comp.compare(a, b) < 0 ? (bc < 0 ? b : comp.compare(a,
284:                        c) < 0 ? c : a) : (bc > 0 ? b
285:                        : comp.compare(a, c) > 0 ? c : a));
286:            }
287:
288:            //	/**
289:            //	 * Swaps x[a .. (a+n-1)] with x[b .. (b+n-1)].
290:            //	 */
291:            //	private static void vecswap(Swapper swapper, int a, int b, int n) {
292:            //		for (int i=0; i<n; i++, a++, b++) swapper.swap(a, b);
293:            //	}
294:
295:            /**
296:             * Sorts the specified range of elements according
297:             * to the order induced by the specified comparator.  All elements in the
298:             * range must be <i>mutually comparable</i> by the specified comparator
299:             * (that is, <tt>c.compare(a, b)</tt> must not throw an
300:             * exception for any indexes <tt>a</tt> and
301:             * <tt>b</tt> in the range).<p>
302:             *
303:             * This sort is guaranteed to be <i>stable</i>:  equal elements will
304:             * not be reordered as a result of the sort.<p>
305:             *
306:             * The sorting algorithm is a modified mergesort (in which the merge is
307:             * omitted if the highest element in the low sublist is less than the
308:             * lowest element in the high sublist).  This algorithm offers guaranteed
309:             * n*log(n) performance, and can approach linear performance on nearly
310:             * sorted lists.
311:             *
312:             * @param fromIndex the index of the first element (inclusive) to be sorted.
313:             * @param toIndex the index of the last element (exclusive) to be sorted.
314:             * @param c the comparator to determine the order of the generic data;
315:             *  an object that knows how to swap the elements at any two indexes (a,b).
316:             *
317:             */
318:            public static void mergeSort(int fromIndex, int toIndex, Sortable c) {
319:                /*
320:                 * We retain the same method signature as quickSort. Given only a
321:                 * comparator and swapper we do not know how to copy and move elements
322:                 * from/to temporary arrays. Hence, in contrast to the JDK mergesorts
323:                 * this is an "in-place" mergesort, i.e. does not allocate any temporary
324:                 * arrays. A non-inplace mergesort would be faster in most cases, but
325:                 * would require non-intuitive delegate objects. Remember that an
326:                 * in-place merge phase requires N logN swaps, while an out-of-place
327:                 * merge phase requires only N swaps. This doesn't matter much if swaps
328:                 * are cheap and comparisons are expensive. Nonetheless this can
329:                 * certainly be suboptimal.
330:                 */
331:
332:                // Insertion sort on smallest arrays
333:                if (toIndex - fromIndex < SMALL) {
334:                    for (int i = fromIndex; i < toIndex; i++) {
335:                        for (int j = i; j > fromIndex
336:                                && (c.compare(j - 1, j) > 0); j--) {
337:                            c.swap(j, j - 1);
338:                        }
339:                    }
340:                    return;
341:                }
342:
343:                // Recursively sort halves
344:                int mid = (fromIndex + toIndex) >>> 1; // (fromIndex + toIndex) / 2;
345:                mergeSort(fromIndex, mid, c);
346:                mergeSort(mid, toIndex, c);
347:
348:                // If list is already sorted, nothing left to do.  This is an
349:                // optimization that results in faster sorts for nearly ordered lists.
350:                if (c.compare(mid - 1, mid) <= 0)
351:                    return;
352:
353:                // Merge sorted halves
354:                inplaceMerge(fromIndex, mid, toIndex, c);
355:            }
356:
357:            /**
358:             * Transforms two consecutive sorted ranges into a single sorted
359:             * range.  The initial ranges are <code>[first, middle)</code>
360:             * and <code>[middle, last)</code>, and the resulting range is
361:             * <code>[first, last)</code>.
362:             * Elements in the first input range will precede equal elements in the
363:             * second.
364:             */
365:            private static void inplaceMerge(int first, int middle, int last,
366:                    Sortable comp) {
367:                if (first >= middle || middle >= last)
368:                    return;
369:                if (last - first == 2) {
370:                    if (comp.compare(middle, first) < 0) {
371:                        comp.swap(first, middle);
372:                    }
373:                    return;
374:                }
375:                int firstCut;
376:                int secondCut;
377:                if (middle - first > last - middle) {
378:                    firstCut = first + ((middle - first) >>> 1); // first + ((middle - first) / 2);
379:                    // secondCut = lower_bound(middle, last, firstCut, comp);
380:                    // manually inlined for speed (speedup = 2)
381:                    int _first = middle;
382:                    int len = last - _first;
383:                    while (len > 0) {
384:                        int half = len >>> 1; // len / 2;
385:                        int mid = _first + half;
386:                        if (comp.compare(mid, firstCut) < 0) {
387:                            _first = mid + 1;
388:                            len -= half + 1;
389:                        } else {
390:                            len = half;
391:                        }
392:                    }
393:                    secondCut = _first;
394:                } else {
395:                    secondCut = middle + ((last - middle) >>> 1); // middle + ((last - middle) / 2);
396:                    // firstCut = upper_bound(first, middle, secondCut, comp);
397:                    // manually inlined for speed (speedup = 2)
398:                    int _first = first;
399:                    int len = middle - _first;
400:                    while (len > 0) {
401:                        int half = len >>> 1; // len / 2;
402:                        int mid = _first + half;
403:                        if (comp.compare(secondCut, mid) < 0) {
404:                            len = half;
405:                        } else {
406:                            _first = mid + 1;
407:                            len -= half + 1;
408:                        }
409:                    }
410:                    firstCut = _first;
411:                }
412:
413:                // rotate(firstCut, middle, secondCut, swapper);
414:                // is manually inlined for speed
415:                // (hotspot compiler inlining in recursive methods seems to work only for
416:                // small call depths, even if methods are "static private")
417:                // speedup = 1.7
418:                // begin inline
419:                int first2 = firstCut;
420:                int middle2 = middle;
421:                int last2 = secondCut;
422:                if (middle2 != first2 && middle2 != last2) {
423:                    int first1 = first2;
424:                    int last1 = middle2;
425:                    while (first1 < --last1)
426:                        comp.swap(first1++, last1);
427:                    first1 = middle2;
428:                    last1 = last2;
429:                    while (first1 < --last1)
430:                        comp.swap(first1++, last1);
431:                    first1 = first2;
432:                    last1 = last2;
433:                    while (first1 < --last1)
434:                        comp.swap(first1++, last1);
435:                }
436:                // end inline
437:
438:                middle = firstCut + (secondCut - middle);
439:                inplaceMerge(first, firstCut, middle, comp);
440:                inplaceMerge(middle, secondCut, last, comp);
441:            }
442:
443:            //	/**
444:            //	 * Performs a binary search on an already-sorted range: finds the first
445:            //	 * position where an element can be inserted without violating the ordering.
446:            //	 * Sorting is by a user-supplied comparison function.
447:            //	 * @param array    Array containing the range.
448:            //	 * @param first    Beginning of the range.
449:            //	 * @param last     One past the end of the range.
450:            //	 * @param x        Element to be searched for.
451:            //	 * @param comp     Comparison function.
452:            //	 * @return         The largest index i such that, for every j in the
453:            //	 *                 range <code>[first, i)</code>,
454:            //	 *                 <code>comp.apply(array[j], x)</code> is
455:            //	 *                 <code>true</code>.
456:            //	 * @see Sorting#upper_bound
457:            //	 * @see Sorting#equal_range
458:            //	 * @see Sorting#binary_search
459:            //	 */
460:            //	private static int lower_bound(int first, int last, int x, IntComparator comp) {
461:            //		int len = last - first;
462:            //		while (len > 0) {
463:            //			int half = len >>> 1; // len / 2;
464:            //			int middle = first + half;
465:            //			if (comp.compare(middle, x)<0) {
466:            //				first = middle + 1;
467:            //				len -= half + 1;
468:            //			}
469:            //			else {
470:            //				len = half;
471:            //			}
472:            //		}
473:            //		return first;
474:            //	}
475:            //
476:            //	/**
477:            //	 * Performs a binary search on an already-sorted range: finds the last
478:            //	 * position where an element can be inserted without violating the ordering.
479:            //	 * Sorting is by a user-supplied comparison function.
480:            //	 * @param array    Array containing the range.
481:            //	 * @param first    Beginning of the range.
482:            //	 * @param last     One past the end of the range.
483:            //	 * @param x        Element to be searched for.
484:            //	 * @param comp     Comparison function.
485:            //	 * @return         The largest index i such that, for every j in the
486:            //	 *                 range <code>[first, i)</code>,
487:            //	 *                 <code>comp.apply(x, array[j])</code> is
488:            //	 *                 <code>false</code>.
489:            //	 * @see Sorting#lower_bound
490:            //	 * @see Sorting#equal_range
491:            //	 * @see Sorting#binary_search
492:            //	 */
493:            //	private static int upper_bound(int first, int last, int x, IntComparator comp) {
494:            //		int len = last - first;
495:            //		while (len > 0) {
496:            //			int half = len >>> 1; // len / 2;
497:            //			int middle = first + half;
498:            //			if (comp.compare(x, middle)<0) {
499:            //				len = half;
500:            //			}
501:            //			else {
502:            //				first = middle + 1;
503:            //				len -= half + 1;
504:            //			}
505:            //		}
506:            //		return first;
507:            //	}
508:
509:        }
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.