Java Doc for GenericSorter.java in  » XML » XPath-Saxon » net » sf » saxon » sort » Java Source Code / Java DocumentationJava Source Code and Java Documentation

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » XML » XPath Saxon » net.sf.saxon.sort 
Source Cross Reference  Class Diagram Java Document (Java Doc) 


java.lang.Object
   net.sf.saxon.sort.GenericSorter

GenericSorter
public class GenericSorter extends Object (Code)
Generically sorts arbitrary shaped data (for example multiple arrays, 1,2 or 3-d matrices, and so on) using a quicksort or mergesort. This class addresses two problems, namely
  • Sorting multiple arrays in sync
  • Sorting by multiple sorting criteria (primary, secondary, tertiary, ...)

Sorting multiple arrays in sync

Assume we have three arrays X, Y and Z. We want to sort all three arrays by X (or some arbitrary comparison function). For example, we have
X=[3, 2, 1], Y=[3.0, 2.0, 1.0], Z=[6.0, 7.0, 8.0]. The output should be
X=[1, 2, 3], Y=[1.0, 2.0, 3.0], Z=[8.0, 7.0, 6.0]
.

How can we achive this? Here are several alternatives. We could ...

  1. make a list of Point3D objects, sort the list as desired using a comparison function, then copy the results back into X, Y and Z. The classic object-oriented way.
  2. make an index list [0,1,2,...,N-1], sort the index list using a comparison function, then reorder the elements of X,Y,Z as defined by the index list. Reordering cannot be done in-place, so we need to copy X to some temporary array, then copy in the right order back from the temporary into X. Same for Y and Z.
  3. use a generic quicksort or mergesort which, whenever two elements in X are swapped, also swaps the corresponding elements in Y and Z.
Alternatives 1 and 2 involve quite a lot of copying and allocate significant amounts of temporary memory. Alternative 3 involves more swapping, more polymorphic message dispatches, no copying and does not need any temporary memory.

This class implements alternative 3. It operates on arbitrary shaped data. In fact, it has no idea what kind of data it is sorting. Comparisons and swapping are delegated to user provided objects which know their data and can do the job.

Lets call the generic data g (it may be one array, three linked lists or whatever). This class takes a user comparison function operating on two indexes (a,b), namely an Sortable . The comparison function determines whether g[a] is equal, less or greater than g[b]. The sort, depending on its implementation, can decide to swap the data at index a with the data at index b. It calls a user provided Sortable object that knows how to swap the data of these indexes.

The following snippet shows how to solve the problem.
 final int[] x;
 final double[] y;
 final double[] z;
 x = new int[]    {3,   2,   1  };
 y = new double[] {3.0, 2.0, 1.0};
 z = new double[] {6.0, 7.0, 8.0};
 // this one knows how to swap two indexes (a,b)
 Swapper swapper = new Swapper() {
    public void swap(int a, int b) {
       int t1;	double t2, t3;
       t1 = x[a]; x[a] = x[b];	x[b] = t1;
       t2 = y[a]; y[a] = y[b]; y[b] = t2;
       t3 = z[a]; z[a] = z[b];	z[b] = t3;
    }
 };
 // simple comparison: compare by X and ignore Y,Z
IntComparator comp = new IntComparator() {    public int compare(int a, int b) {       return x[a]==x[b] ? 0 : (x[a]<x[b] ? -1 : 1);    } }; System.out.println("before:"); System.out.println("X="+Arrays.toString(x)); System.out.println("Y="+Arrays.toString(y)); System.out.println("Z="+Arrays.toString(z)); GenericSorting.quickSort(0, X.length, comp, swapper); // GenericSorting.mergeSort(0, X.length, comp, swapper); System.out.println("after:"); System.out.println("X="+Arrays.toString(x)); System.out.println("Y="+Arrays.toString(y)); System.out.println("Z="+Arrays.toString(z));

Sorting by multiple sorting criterias (primary, secondary, tertiary, ...)

Assume again we have three arrays X, Y and Z. Now we want to sort all three arrays, primarily by Y, secondarily by Z (if Y elements are equal). For example, we have
X=[6, 7, 8, 9], Y=[3.0, 2.0, 1.0, 3.0], Z=[5.0, 4.0, 4.0, 1.0]. The output should be
X=[8, 7, 9, 6], Y=[1.0, 2.0, 3.0, 3.0], Z=[4.0, 4.0, 1.0, 5.0]
.

Here is how to solve the problem. All code in the above example stays the same, except that we modify the comparison function as follows

 //compare by Y, if that doesn't help, reside to Z
 IntComparator comp = new IntComparator() {
    public int compare(int a, int b) {
       if (y[a]==y[b]) return z[a]==z[b] ? 0 : (z[a]<z[b] ? -1 : 1);
       return y[a]<y[b] ? -1 : 1;
    }
 };
 

Notes

Sorts involving floating point data and not involving comparators, like, for example provided in the JDK java.util.Arrays and in the Colt (cern.colt.Sorting) handle floating point numbers in special ways to guarantee that NaN's are swapped to the end and -0.0 comes before 0.0. Methods delegating to comparators cannot do this. They rely on the comparator. Thus, if such boundary cases are an issue for the application at hand, comparators explicitly need to implement -0.0 and NaN aware comparisons. Remember: -0.0 < 0.0 == false, (-0.0 == 0.0) == true, as well as 5.0 < Double.NaN == false, 5.0 > Double.NaN == false. Same for float.

Implementation

The quicksort is a derivative of the JDK 1.2 V1.26 algorithms (which are, in turn, based on Bentley's and McIlroy's fine work). The mergesort is a derivative of the JAL algorithms, with optimisations taken from the JDK algorithms. Both quick and merge sort are "in-place", i.e. do not allocate temporary memory (helper arrays). Mergesort is stable (by definition), while quicksort is not. A stable sort is, for example, helpful, if matrices are sorted successively by multiple columns. It preserves the relative position of equal elements.
author:
   wolfgang.hoschek@cern.ch
version:
   1.0, 03-Jul-99




Constructor Summary
protected  GenericSorter()
     Makes this class non instantiable, but still let's others inherit from it.

Method Summary
public static  voidmergeSort(int fromIndex, int toIndex, Sortable c)
     Sorts the specified range of elements according to the order induced by the specified comparator.
public static  voidquickSort(int fromIndex, int toIndex, Sortable c)
     Sorts the specified range of elements according to the order induced by the specified comparator.


Constructor Detail
GenericSorter
protected GenericSorter()(Code)
Makes this class non instantiable, but still let's others inherit from it.




Method Detail
mergeSort
public static void mergeSort(int fromIndex, int toIndex, Sortable c)(Code)
Sorts the specified range of elements according to the order induced by the specified comparator. All elements in the range must be mutually comparable by the specified comparator (that is, c.compare(a, b) must not throw an exception for any indexes a and b in the range).

This sort is guaranteed to be stable: equal elements will not be reordered as a result of the sort.

The sorting algorithm is a modified mergesort (in which the merge is omitted if the highest element in the low sublist is less than the lowest element in the high sublist). This algorithm offers guaranteed n*log(n) performance, and can approach linear performance on nearly sorted lists.
Parameters:
  fromIndex - the index of the first element (inclusive) to be sorted.
Parameters:
  toIndex - the index of the last element (exclusive) to be sorted.
Parameters:
  c - the comparator to determine the order of the generic data;an object that knows how to swap the elements at any two indexes (a,b).




quickSort
public static void quickSort(int fromIndex, int toIndex, Sortable c)(Code)
Sorts the specified range of elements according to the order induced by the specified comparator. All elements in the range must be mutually comparable by the specified comparator (that is, c.compare(a, b) must not throw an exception for any indexes a and b in the range).

The sorting algorithm is a tuned quicksort, adapted from Jon L. Bentley and M. Douglas McIlroy's "Engineering a Sort Function", Software-Practice and Experience, Vol. 23(11) P. 1249-1265 (November 1993). For details, see http://citeseer.ist.psu.edu/bentley93engineering.html. This algorithm offers n*log(n) performance on many data sets that cause other quicksorts to degrade to quadratic performance.
Parameters:
  fromIndex - the index of the first element (inclusive) to be sorted.
Parameters:
  toIndex - the index of the last element (exclusive) to be sorted.
Parameters:
  c - the comparator to determine the order of the generic data;an object that knows how to swap the elements at any two indexes (a,b).




Methods inherited from java.lang.Object
native protected Object clone() throws CloneNotSupportedException(Code)(Java Doc)
public boolean equals(Object obj)(Code)(Java Doc)
protected void finalize() throws Throwable(Code)(Java Doc)
final native public Class getClass()(Code)(Java Doc)
native public int hashCode()(Code)(Java Doc)
final native public void notify()(Code)(Java Doc)
final native public void notifyAll()(Code)(Java Doc)
public String toString()(Code)(Java Doc)
final native public void wait(long timeout) throws InterruptedException(Code)(Java Doc)
final public void wait(long timeout, int nanos) throws InterruptedException(Code)(Java Doc)
final public void wait() throws InterruptedException(Code)(Java Doc)

www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.