sum salary over PARTITION BY : OVER « Analytical Functions « Oracle PL/SQL Tutorial

Oracle PL/SQL Tutorial
1. Introduction
2. Query Select
3. Set
4. Insert Update Delete
5. Sequences
6. Table
7. Table Joins
8. View
9. Index
10. SQL Data Types
11. Character String Functions
12. Aggregate Functions
13. Date Timestamp Functions
14. Numerical Math Functions
15. Conversion Functions
16. Analytical Functions
17. Miscellaneous Functions
18. Regular Expressions Functions
19. Statistical Functions
20. Linear Regression Functions
21. PL SQL Data Types
22. PL SQL Statements
23. PL SQL Operators
24. PL SQL Programming
25. Cursor
26. Collections
27. Function Procedure Packages
28. Trigger
29. SQL PLUS Session Environment
30. System Tables Data Dictionary
31. System Packages
32. Object Oriented
33. XML
34. Large Objects
35. Transaction
36. User Privilege
Java
Java Tutorial
Java Source Code / Java Documentation
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Oracle PL/SQL Tutorial » Analytical Functions » OVER 
16. 20. 11. sum salary over PARTITION BY
SQL>
SQL> create table emp
  2  empno      NUMBER(4)    constraint E_PK primary key
  3  , ename      VARCHAR2(8)
  4  , init       VARCHAR2(5)
  5  , job        VARCHAR2(8)
  6  , mgr        NUMBER(4)
  7  , bdate      DATE
  8  , sal        NUMBER(6,2)
  9  , comm       NUMBER(6,2)
 10  , deptno     NUMBER(2)    default 10
 11  ;

Table created.

SQL> insert into emp values(1,'Tom','N',   'TRAINER', 13,date '1965-12-17',  800 , NULL,  20);

row created.

SQL> insert into emp values(2,'Jack','JAM', 'Tester',6,date '1961-02-20',  1600300,   30);

row created.

SQL> insert into emp values(3,'Wil','TF' ,  'Tester',6,date '1962-02-22',  1250500,   30);

row created.

SQL> insert into emp values(4,'Jane','JM',  'Designer', 9,date '1967-04-02',  2975, NULL,  20);

row created.

SQL> insert into emp values(5,'Mary','P',  'Tester',6,date '1956-09-28',  12501400,  30);

row created.

SQL> insert into emp values(6,'Black','R',   'Designer', 9,date '1963-11-01',  2850, NULL,  30);

row created.

SQL> insert into emp values(7,'Chris','AB',  'Designer', 9,date '1965-06-09',  2450, NULL,  10);

row created.

SQL> insert into emp values(8,'Smart','SCJ', 'TRAINER', 4,date '1959-11-26',  3000, NULL,  20);

row created.

SQL> insert into emp values(9,'Peter','CC',   'Designer',NULL,date '1952-11-17',  5000, NULL,  10);

row created.

SQL> insert into emp values(10,'Take','JJ', 'Tester',6,date '1968-09-28',  15000,     30);

row created.

SQL> insert into emp values(11,'Ana','AA',  'TRAINER', 8,date '1966-12-30',  1100, NULL,  20);

row created.

SQL> insert into emp values(12,'Jane','R',   'Manager',   6,date '1969-12-03',  800 , NULL,  30);

row created.

SQL> insert into emp values(13,'Fake','MG',   'TRAINER', 4,date '1959-02-13',  3000, NULL,  20);

row created.

SQL> insert into emp values(14,'Mike','TJA','Manager',   7,date '1962-01-23',  1300, NULL,  10);

row created.

SQL>
SQL>
SQL> break on mgr
SQL>
SQL> select mgr, ename, sal
  2  ,      sum(salover
  3         PARTITION BY mgr
  4           order by mgr, sal, empno
  5           range unbounded preceding
  6         as cumulative
  7  from   emp
  8  order  by mgr, sal;

       MGR ENAME           SAL CUMULATIVE
---------- -------- ---------- ----------
         Smart          3000       3000
           Fake           3000       6000
         Jane            800        800
           Wil            1250       2050
           Mary           1250       3300
           Take           1500       4800
           Jack           1600       6400
         Mike           1300       1300
         Ana            1100       1100
         Chris          2450       2450
           Black          2850       5300
           Jane           2975       8275
        13 Tom             800        800
           Peter          5000       5000

14 rows selected.

SQL>
SQL> --clear breaks
SQL>
SQL>
SQL> drop table emp;

Table dropped.
16. 20. OVER
16. 20. 1. AVG(salary) OVER
16. 20. 2. ROUND(AVG(salary) OVER())
16. 20. 3. Use partitioning in the OVER clause of the aggregate-analytical function
16. 20. 4. Ratio-to-Report
16. 20. 5. Using Analytic Functions AVG(Mark) OVER (PARTITION BY StudentID ORDER BY StudentID, Mark)
16. 20. 6. Using Analytic Functions: AVG(Mark) OVER
16. 20. 7. Using Analytic Functions: AVG(Mark) OVER (ORDER BY StudentID, Mark)
16. 20. 8. Using Analytic Functions: AVG(Mark) OVER(PARTITION BY StudentID ORDER BY StudentID, Mark RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
16. 20. 9. sum over (nothing)
16. 20. 10. sum over partition by, order by
16. 20. 11. sum salary over PARTITION BY
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.