Greatest Common Divisor (GCD) of positive integer numbers : Math « Development Class « Java

Java
1. 2D Graphics GUI
2. 3D
3. Advanced Graphics
4. Ant
5. Apache Common
6. Chart
7. Class
8. Collections Data Structure
9. Data Type
10. Database SQL JDBC
11. Design Pattern
12. Development Class
13. EJB3
14. Email
15. Event
16. File Input Output
17. Game
18. Generics
19. GWT
20. Hibernate
21. I18N
22. J2EE
23. J2ME
24. JDK 6
25. JNDI LDAP
26. JPA
27. JSP
28. JSTL
29. Language Basics
30. Network Protocol
31. PDF RTF
32. Reflection
33. Regular Expressions
34. Scripting
35. Security
36. Servlets
37. Spring
38. Swing Components
39. Swing JFC
40. SWT JFace Eclipse
41. Threads
42. Tiny Application
43. Velocity
44. Web Services SOA
45. XML
Java Tutorial
Java Source Code / Java Documentation
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java » Development Class » MathScreenshots 
Greatest Common Divisor (GCD) of positive integer numbers
    
/*
 * $RCSfile: MathUtil.java,v $
 * $Revision: 1.1 $
 * $Date: 2005/02/11 05:02:25 $
 * $State: Exp $
 *
 * Class:                   MathUtil
 *
 * Description:             Utility mathematical methods
 *
 *
 *
 * COPYRIGHT:
 *
 * This software module was originally developed by Raphaël Grosbois and
 * Diego Santa Cruz (Swiss Federal Institute of Technology-EPFL); Joel
 * Askelöf (Ericsson Radio Systems AB); and Bertrand Berthelot, David
 * Bouchard, Félix Henry, Gerard Mozelle and Patrice Onno (Canon Research
 * Centre France S.A) in the course of development of the JPEG2000
 * standard as specified by ISO/IEC 15444 (JPEG 2000 Standard). This
 * software module is an implementation of a part of the JPEG 2000
 * Standard. Swiss Federal Institute of Technology-EPFL, Ericsson Radio
 * Systems AB and Canon Research Centre France S.A (collectively JJ2000
 * Partners) agree not to assert against ISO/IEC and users of the JPEG
 * 2000 Standard (Users) any of their rights under the copyright, not
 * including other intellectual property rights, for this software module
 * with respect to the usage by ISO/IEC and Users of this software module
 * or modifications thereof for use in hardware or software products
 * claiming conformance to the JPEG 2000 Standard. Those intending to use
 * this software module in hardware or software products are advised that
 * their use may infringe existing patents. The original developers of
 * this software module, JJ2000 Partners and ISO/IEC assume no liability
 * for use of this software module or modifications thereof. No license
 * or right to this software module is granted for non JPEG 2000 Standard
 * conforming products. JJ2000 Partners have full right to use this
 * software module for his/her own purpose, assign or donate this
 * software module to any third party and to inhibit third parties from
 * using this software module for non JPEG 2000 Standard conforming
 * products. This copyright notice must be included in all copies or
 * derivative works of this software module.
 *
 * Copyright (c) 1999/2000 JJ2000 Partners.
 * */



/**
 * This class contains a collection of utility methods fro mathematical
 * operations. All methods are static.
 * */
public class MathUtil {

  /** 
   * Method that calculates the Greatest Common Divisor (GCD) of several
   * positive integer numbers.
   *
   @param x Array containing the numbers.
   * */
  public static final int gcd(int[] x) {
      if(x.length<2) {
          throw new Error("Do not use this method if there are less than"+
                          " two numbers.");
      }
      int tmp = gcd(x[x.length-1],x[x.length-2]);
      for(int i=x.length-3; i>=0; i--) {
          if(x[i]<0) {
              throw new IllegalArgumentException("Cannot compute the least "+
                                                 "common multiple of "+
                                                 "several numbers where "+
                                                 "one, at least,"+
                                                 "is negative.");
          }
          tmp = gcd(tmp,x[i]);
      }
      return tmp;
  }

  /** 
   * Method that calculates the Greatest Common Divisor (GCD) of two
   * positive integer numbers.
   * */
  public static final int gcd(int x1,int x2) {
      if(x1<|| x2<0) {
          throw new IllegalArgumentException("Cannot compute the GCD "+
                                             "if one integer is negative.");
      }
      int a,b,g,z;

      if(x1>x2) {
          a = x1;
          b = x2;
      else {
          a = x2;
          b = x1;
      }

      if(b==0return 0;

      g = b;
      while (g!=0) {
          z= a%g;
          a = g;
          g = z;
      }
      return a;
  }

}

   
    
    
    
  
Related examples in the same category
1. Absolute value
2. Find absolute value of float, int, double and long using Math.abs
3. Find ceiling value of a number using Math.ceil
4. Find exponential value of a number using Math.exp
5. Find floor value of a number using Math.floor
6. Find minimum of two numbers using Math.min
7. Find power using Math.pow
8. Find square root of a number using Math.sqrt
9. Find natural logarithm value of a number using Math.log
10. Find maximum of two numbers using Math.max
11. Get the power valueGet the power value
12. Using the Math Trig MethodsUsing the Math Trig Methods
13. Using BigDecimal for PrecisionUsing BigDecimal for Precision
14. Demonstrate our own version round()Demonstrate our own version round()
15. Demonstrate a few of the Math functions for TrigonometryDemonstrate a few of the Math functions for Trigonometry
16. Exponential DemoExponential Demo
17. Min Demo
18. Basic Math DemoBasic Math Demo
19. Using strict math in applicationsUsing strict math in applications
20. Conversion between polar and rectangular coordinates
21. Using the pow() function
22. Using strict math at the method level
23. Calculating hyperbolic functions
24. Calculating trigonometric functions
25. Weighted floating-point comparisons
26. Solving right triangles
27. Applying the quadratic formula
28. Calculate the floor of the log, base 2
29. Least Common Multiple (LCM) of two strictly positive integer numbers
30. Moving Average
31. Make Exponention
32. Caclulate the factorial of N
33. Trigonometric DemoTrigonometric Demo
34. Complex Number Demo
35. sqrt(a^2 + b^2) without under/overflow
36. Returns an integer hash code representing the given double array value.
37. Returns an integer hash code representing the given double value.
38. Returns n!. Shorthand for n Factorial, the product of the numbers 1,...,n as a double.
39. Returns n!. Shorthand for n Factorial, the product of the numbers 1,...,n.
40. Returns the hyperbolic sine of x.
41. Contains static definition for matrix math methods.
42. For a double precision value x, this method returns +1.0 if x >= 0 and -1.0 if x < 0. Returns NaN if x is NaN.
43. For a float value x, this method returns +1.0F if x >= 0 and -1.0F if x < 0. Returns NaN if x is NaN.
44. Normalize an angle in a 2&pi wide interval around a center value.
45. Normalizes an angle to a relative angle.
46. Normalizes an angle to an absolute angle
47. Normalizes an angle to be near an absolute angle
48. Returns the natural logarithm of n!.
49. Returns the least common multiple between two integer values.
50. Gets the greatest common divisor of the absolute value of two numbers
51. Matrix manipulation
52. Returns exact (http://mathworld.wolfram.com/BinomialCoefficient.html) Binomial Coefficient
53. Returns a double representation of the (http://mathworld.wolfram.com/BinomialCoefficient.html) Binomial Coefficient
54. Returns the natural log of the (http://mathworld.wolfram.com/BinomialCoefficient.html) Binomial Coefficient
55. Returns the hyperbolic cosine of x.
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.