Normalizes an angle to be near an absolute angle : Math « Development Class « Java

Java
1. 2D Graphics GUI
2. 3D
3. Advanced Graphics
4. Ant
5. Apache Common
6. Chart
7. Class
8. Collections Data Structure
9. Data Type
10. Database SQL JDBC
11. Design Pattern
12. Development Class
13. EJB3
14. Email
15. Event
16. File Input Output
17. Game
18. Generics
19. GWT
20. Hibernate
21. I18N
22. J2EE
23. J2ME
24. JDK 6
25. JNDI LDAP
26. JPA
27. JSP
28. JSTL
29. Language Basics
30. Network Protocol
31. PDF RTF
32. Reflection
33. Regular Expressions
34. Scripting
35. Security
36. Servlets
37. Spring
38. Swing Components
39. Swing JFC
40. SWT JFace Eclipse
41. Threads
42. Tiny Application
43. Velocity
44. Web Services SOA
45. XML
Java Tutorial
Java Source Code / Java Documentation
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java » Development Class » MathScreenshots 
Normalizes an angle to be near an absolute angle
   
/*******************************************************************************
 * Copyright (c) 2001, 2008 Mathew A. Nelson and Robocode contributors
 * All rights reserved. This program and the accompanying materials
 * are made available under the terms of the Common Public License v1.0
 * which accompanies this distribution, and is available at
 * http://robocode.sourceforge.net/license/cpl-v10.html
 *
 * Contributors:
 *     Mathew A. Nelson
 *     - Initial API and implementation
 *     Flemming N. Larsen
 *     - Moved all methods to classes like FileUtil, StringUtil, WindowUtil,
 *       Logger etc. exception for the following methods, which have been kept
 *       here as legacy robots make use of these methods:
 *       - normalAbsoluteAngle()
 *       - normalNearAbsoluteAngle()
 *       - normalRelativeAngle()
 *     - The isNear() was made public
 *     - Optimized and provided javadocs for all methods
 *******************************************************************************/



import static java.lang.Math.PI;
import java.util.Random;


/**
 * Utility class that provide methods for normalizing angles.
 *
 @author Mathew A. Nelson (original)
 @author Flemming N. Larsen (contributor)
 */

public class Utils {
  private final static double TWO_PI = * PI;
  private final static double THREE_PI_OVER_TWO = * PI / 2;
  private final static double PI_OVER_TWO = PI / 2;
  public static final double NEAR_DELTA = .00001;
  /**
   * Normalizes an angle to be near an absolute angle.
   * The normalized angle will be in the range from 0 to 2*PI, where 2*PI
   * itself is not included.
   * If the normalized angle is near to 0, PI/2, PI, 3*PI/2 or 2*PI, that
   * angle will be returned. The {@link #isNear(double, double) isNear}
   * method is used for defining when the angle is near one of angles listed
   * above.
   *
   @param angle the angle to normalize
   @return the normalized angle that will be in the range of [0,2*PI[
   @see #normalAbsoluteAngle(double)
   @see #isNear(double, double)
   */
  public static double normalNearAbsoluteAngle(double angle) {
    angle = (angle %= TWO_PI>= ? angle : (angle + TWO_PI);

    if (isNear(angle, PI)) {
      return PI;
    else if (angle < PI) {
      if (isNear(angle, 0)) {
        return 0;
      else if (isNear(angle, PI_OVER_TWO)) {
        return PI_OVER_TWO;
      }
    else {
      if (isNear(angle, THREE_PI_OVER_TWO)) {
        return THREE_PI_OVER_TWO;
      else if (isNear(angle, TWO_PI)) {
        return 0;
      }
    }
    return angle;
  }
  /**
   * Tests if the two {@code double} values are near to each other.
   * It is recommended to use this method instead of testing if the two
   * doubles are equal using an this expression: {@code value1 == value2}.
   * The reason being, that this expression might never become
   * {@code true} due to the precision of double values.
   * Whether or not the specified doubles are near to each other is defined by
   * the following expression:
   * {@code (Math.abs(value1 - value2) < .00001)}
   *
   @param value1 the first double value
   @param value2 the second double value
   @return {@code true} if the two doubles are near to each other;
   *         {@code false} otherwise.
   */
  public static boolean isNear(double value1, double value2) {
    return (Math.abs(value1 - value2< NEAR_DELTA);
  }
}

   
    
    
  
Related examples in the same category
1. Absolute value
2. Find absolute value of float, int, double and long using Math.abs
3. Find ceiling value of a number using Math.ceil
4. Find exponential value of a number using Math.exp
5. Find floor value of a number using Math.floor
6. Find minimum of two numbers using Math.min
7. Find power using Math.pow
8. Find square root of a number using Math.sqrt
9. Find natural logarithm value of a number using Math.log
10. Find maximum of two numbers using Math.max
11. Get the power valueGet the power value
12. Using the Math Trig MethodsUsing the Math Trig Methods
13. Using BigDecimal for PrecisionUsing BigDecimal for Precision
14. Demonstrate our own version round()Demonstrate our own version round()
15. Demonstrate a few of the Math functions for TrigonometryDemonstrate a few of the Math functions for Trigonometry
16. Exponential DemoExponential Demo
17. Min Demo
18. Basic Math DemoBasic Math Demo
19. Using strict math in applicationsUsing strict math in applications
20. Conversion between polar and rectangular coordinates
21. Using the pow() function
22. Using strict math at the method level
23. Calculating hyperbolic functions
24. Calculating trigonometric functions
25. Weighted floating-point comparisons
26. Solving right triangles
27. Applying the quadratic formula
28. Calculate the floor of the log, base 2
29. Greatest Common Divisor (GCD) of positive integer numbers
30. Least Common Multiple (LCM) of two strictly positive integer numbers
31. Moving Average
32. Make Exponention
33. Caclulate the factorial of N
34. Trigonometric DemoTrigonometric Demo
35. Complex Number Demo
36. sqrt(a^2 + b^2) without under/overflow
37. Returns an integer hash code representing the given double array value.
38. Returns an integer hash code representing the given double value.
39. Returns n!. Shorthand for n Factorial, the product of the numbers 1,...,n as a double.
40. Returns n!. Shorthand for n Factorial, the product of the numbers 1,...,n.
41. Returns the hyperbolic sine of x.
42. Contains static definition for matrix math methods.
43. For a double precision value x, this method returns +1.0 if x >= 0 and -1.0 if x < 0. Returns NaN if x is NaN.
44. For a float value x, this method returns +1.0F if x >= 0 and -1.0F if x < 0. Returns NaN if x is NaN.
45. Normalize an angle in a 2&pi wide interval around a center value.
46. Normalizes an angle to a relative angle.
47. Normalizes an angle to an absolute angle
48. Returns the natural logarithm of n!.
49. Returns the least common multiple between two integer values.
50. Gets the greatest common divisor of the absolute value of two numbers
51. Matrix manipulation
52. Returns exact (http://mathworld.wolfram.com/BinomialCoefficient.html) Binomial Coefficient
53. Returns a double representation of the (http://mathworld.wolfram.com/BinomialCoefficient.html) Binomial Coefficient
54. Returns the natural log of the (http://mathworld.wolfram.com/BinomialCoefficient.html) Binomial Coefficient
55. Returns the hyperbolic cosine of x.
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.