Source Code Cross Referenced for PerspectiveTransform.java in  » 6.0-JDK-Modules » Java-Advanced-Imaging » javax » media » jai » Java Source Code / Java DocumentationJava Source Code and Java Documentation

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » 6.0 JDK Modules » Java Advanced Imaging » javax.media.jai 
Source Cross Referenced  Class Diagram Java Document (Java Doc) 


0001:        /*
0002:         * $RCSfile: PerspectiveTransform.java,v $
0003:         *
0004:         * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
0005:         *
0006:         * Use is subject to license terms.
0007:         *
0008:         * $Revision: 1.1 $
0009:         * $Date: 2005/02/11 04:57:15 $
0010:         * $State: Exp $
0011:         */
0012:        package javax.media.jai;
0013:
0014:        import java.awt.geom.AffineTransform;
0015:        import java.awt.geom.Point2D;
0016:        import java.awt.geom.NoninvertibleTransformException;
0017:        import java.io.Serializable;
0018:
0019:        /**
0020:         * A 2D perspective (or projective) transform, used by various OpImages.
0021:         *
0022:         * <p> A perspective transformation is capable of mapping an arbitrary
0023:         * quadrilateral into another arbitrary quadrilateral, while
0024:         * preserving the straightness of lines.  Unlike an affine
0025:         * transformation, the parallelism of lines in the source is not
0026:         * necessarily preserved in the output.
0027:         *
0028:         * <p> Such a coordinate transformation can be represented by a 3x3
0029:         * matrix which transforms homogenous source coordinates
0030:         * <code>(x,&nbsp;y,&nbsp;1)</code> into destination coordinates
0031:         * <code>(x',&nbsp;y',&nbsp;w)</code>.  To convert back into non-homogenous
0032:         * coordinates (X, Y), <code>x'</code> and <code>y'</code> are divided by
0033:         * <code>w</code>.
0034:         *
0035:         * <pre>
0036:         *	[ x']   [  m00  m01  m02  ] [ x ]   [ m00x + m01y + m02 ]
0037:         *	[ y'] = [  m10  m11  m12  ] [ y ] = [ m10x + m11y + m12 ]
0038:         *	[ w ]   [  m20  m21  m22  ] [ 1 ]   [ m20x + m21y + m22 ]
0039:         *
0040:         *	  x' = (m00x + m01y + m02)
0041:         *	  y' = (m10x + m11y + m12)
0042:         *
0043:         *        w  = (m20x + m21y + m22)
0044:         *
0045:         *        X = x' / w
0046:         *        Y = y' / w
0047:         * </pre>
0048:         */
0049:        public final class PerspectiveTransform implements  Cloneable,
0050:                Serializable {
0051:
0052:            private static final double PERSPECTIVE_DIVIDE_EPSILON = 1.0e-10;
0053:
0054:            /** An element of the transform matrix. */
0055:            double m00, m01, m02, m10, m11, m12, m20, m21, m22;
0056:
0057:            /** Constructs an identity PerspectiveTransform. */
0058:            public PerspectiveTransform() {
0059:                m00 = m11 = m22 = 1.0;
0060:                m01 = m02 = m10 = m12 = m20 = m21 = 0.0;
0061:            }
0062:
0063:            /**
0064:             * Constructs a new PerspectiveTransform from 9 floats.
0065:             * @deprecated as of JAI 1.1 Use PerspectiveTransform(double[][]) instead.
0066:             */
0067:            public PerspectiveTransform(float m00, float m01, float m02,
0068:                    float m10, float m11, float m12, float m20, float m21,
0069:                    float m22) {
0070:                this .m00 = m00;
0071:                this .m01 = m01;
0072:                this .m02 = m02;
0073:                this .m10 = m10;
0074:                this .m11 = m11;
0075:                this .m12 = m12;
0076:                this .m20 = m20;
0077:                this .m21 = m21;
0078:                this .m22 = m22;
0079:            }
0080:
0081:            /**
0082:             * Constructs a new PerspectiveTransform from 9 doubles.
0083:             * @deprecated as of JAI 1.1 Use PerspectiveTransform(double[][]) instead.
0084:             */
0085:            public PerspectiveTransform(double m00, double m01, double m02,
0086:                    double m10, double m11, double m12, double m20, double m21,
0087:                    double m22) {
0088:                this .m00 = m00;
0089:                this .m01 = m01;
0090:                this .m02 = m02;
0091:                this .m10 = m10;
0092:                this .m11 = m11;
0093:                this .m12 = m12;
0094:                this .m20 = m20;
0095:                this .m21 = m21;
0096:                this .m22 = m22;
0097:            }
0098:
0099:            /**
0100:             * Constructs a new PerspectiveTransform from a one-dimensional
0101:             * array of 9 floats, in row-major order.
0102:             * The values in the array are assumed to be
0103:             * { m00 m01 m02 m10 m11 m12 m20 m21 m22 }.
0104:             * @throws IllegalArgumentException if flatmatrix is null
0105:             * @throws ArrayIndexOutOfBoundsException if flatmatrix is too small
0106:             * @deprecated as of JAI 1.1 Use PerspectiveTransform(double[][]) instead.
0107:             */
0108:            public PerspectiveTransform(float[] flatmatrix) {
0109:                if (flatmatrix == null) {
0110:                    throw new IllegalArgumentException(JaiI18N
0111:                            .getString("Generic0"));
0112:                }
0113:
0114:                m00 = flatmatrix[0];
0115:                m01 = flatmatrix[1];
0116:                m02 = flatmatrix[2];
0117:                m10 = flatmatrix[3];
0118:                m11 = flatmatrix[4];
0119:                m12 = flatmatrix[5];
0120:                m20 = flatmatrix[6];
0121:                m21 = flatmatrix[7];
0122:                m22 = flatmatrix[8];
0123:            }
0124:
0125:            /**
0126:             * Constructs a new PerspectiveTransform from a two-dimensional
0127:             * array of floats.
0128:             * @throws IllegalArgumentException if matrix is null
0129:             * @throws ArrayIndexOutOfBoundsException if matrix is too small
0130:             *
0131:             * @deprecated as of JAI 1.1 Use PerspectiveTransform(double[][]) instead.
0132:             */
0133:            public PerspectiveTransform(float[][] matrix) {
0134:                if (matrix == null) {
0135:                    throw new IllegalArgumentException(JaiI18N
0136:                            .getString("Generic0"));
0137:                }
0138:
0139:                m00 = matrix[0][0];
0140:                m01 = matrix[0][1];
0141:                m02 = matrix[0][2];
0142:                m10 = matrix[1][0];
0143:                m11 = matrix[1][1];
0144:                m12 = matrix[1][2];
0145:                m20 = matrix[2][0];
0146:                m21 = matrix[2][1];
0147:                m22 = matrix[2][2];
0148:            }
0149:
0150:            /**
0151:             * Constructs a new PerspectiveTransform from a one-dimensional
0152:             * array of 9 doubles, in row-major order.
0153:             * The values in the array are assumed to be
0154:             * { m00 m01 m02 m10 m11 m12 m20 m21 m22 }.
0155:             * @throws IllegalArgumentException if flatmatrix is null
0156:             * @throws ArrayIndexOutOfBoundsException if flatmatrix is too small
0157:             *
0158:             * @deprecated as of JAI 1.1 Use PerspectiveTransform(double[][]) instead.
0159:             */
0160:            public PerspectiveTransform(double[] flatmatrix) {
0161:                if (flatmatrix == null) {
0162:                    throw new IllegalArgumentException(JaiI18N
0163:                            .getString("Generic0"));
0164:                }
0165:
0166:                m00 = flatmatrix[0];
0167:                m01 = flatmatrix[1];
0168:                m02 = flatmatrix[2];
0169:                m10 = flatmatrix[3];
0170:                m11 = flatmatrix[4];
0171:                m12 = flatmatrix[5];
0172:                m20 = flatmatrix[6];
0173:                m21 = flatmatrix[7];
0174:                m22 = flatmatrix[8];
0175:            }
0176:
0177:            /**
0178:             * Constructs a new PerspectiveTransform from a two-dimensional
0179:             * array of doubles.
0180:             * @throws IllegalArgumentException if matrix is null
0181:             * @throws ArrayIndexOutOfBoundsException if matrix is too small
0182:             */
0183:            public PerspectiveTransform(double[][] matrix) {
0184:                if (matrix == null) {
0185:                    throw new IllegalArgumentException(JaiI18N
0186:                            .getString("Generic0"));
0187:                }
0188:
0189:                m00 = matrix[0][0];
0190:                m01 = matrix[0][1];
0191:                m02 = matrix[0][2];
0192:                m10 = matrix[1][0];
0193:                m11 = matrix[1][1];
0194:                m12 = matrix[1][2];
0195:                m20 = matrix[2][0];
0196:                m21 = matrix[2][1];
0197:                m22 = matrix[2][2];
0198:            }
0199:
0200:            /**
0201:             * Constructs a new PerspectiveTransform with the same effect
0202:             * as an existing AffineTransform.
0203:             * @throws IllegalArgumentException if transform is null
0204:             */
0205:            public PerspectiveTransform(AffineTransform transform) {
0206:                if (transform == null) {
0207:                    throw new IllegalArgumentException(JaiI18N
0208:                            .getString("Generic0"));
0209:                }
0210:
0211:                m00 = transform.getScaleX();
0212:                m01 = transform.getShearX();
0213:                m02 = transform.getTranslateX();
0214:                m10 = transform.getShearY();
0215:                m11 = transform.getScaleY();
0216:                m12 = transform.getTranslateY();
0217:                m20 = 0.0;
0218:                m21 = 0.0;
0219:                m22 = 1.0;
0220:            }
0221:
0222:            /**
0223:             * Replaces the matrix with its adjoint.
0224:             */
0225:            private final void makeAdjoint() {
0226:                double m00p = m11 * m22 - m12 * m21;
0227:                double m01p = m12 * m20 - m10 * m22; // flipped sign
0228:                double m02p = m10 * m21 - m11 * m20;
0229:                double m10p = m02 * m21 - m01 * m22; // flipped sign
0230:                double m11p = m00 * m22 - m02 * m20;
0231:                double m12p = m01 * m20 - m00 * m21; // flipped sign
0232:                double m20p = m01 * m12 - m02 * m11;
0233:                double m21p = m02 * m10 - m00 * m12; // flipped sign
0234:                double m22p = m00 * m11 - m01 * m10;
0235:
0236:                // Transpose and copy sub-determinants
0237:                m00 = m00p;
0238:                m01 = m10p;
0239:                m02 = m20p;
0240:                m10 = m01p;
0241:                m11 = m11p;
0242:                m12 = m21p;
0243:                m20 = m02p;
0244:                m21 = m12p;
0245:                m22 = m22p;
0246:            }
0247:
0248:            /**
0249:             * Scales the matrix elements so m22 is equal to 1.0.
0250:             * m22 must not be equal to 0.
0251:             */
0252:            private final void normalize() {
0253:                double invscale = 1.0 / m22;
0254:                m00 *= invscale;
0255:                m01 *= invscale;
0256:                m02 *= invscale;
0257:                m10 *= invscale;
0258:                m11 *= invscale;
0259:                m12 *= invscale;
0260:                m20 *= invscale;
0261:                m21 *= invscale;
0262:                m22 = 1.0;
0263:            }
0264:
0265:            private static final void getSquareToQuad(double x0, double y0,
0266:                    double x1, double y1, double x2, double y2, double x3,
0267:                    double y3, PerspectiveTransform tx) {
0268:                double dx3 = x0 - x1 + x2 - x3;
0269:                double dy3 = y0 - y1 + y2 - y3;
0270:
0271:                tx.m22 = 1.0F;
0272:
0273:                if ((dx3 == 0.0F) && (dy3 == 0.0F)) { // to do: use tolerance
0274:                    tx.m00 = x1 - x0;
0275:                    tx.m01 = x2 - x1;
0276:                    tx.m02 = x0;
0277:                    tx.m10 = y1 - y0;
0278:                    tx.m11 = y2 - y1;
0279:                    tx.m12 = y0;
0280:                    tx.m20 = 0.0F;
0281:                    tx.m21 = 0.0F;
0282:                } else {
0283:                    double dx1 = x1 - x2;
0284:                    double dy1 = y1 - y2;
0285:                    double dx2 = x3 - x2;
0286:                    double dy2 = y3 - y2;
0287:
0288:                    double invdet = 1.0F / (dx1 * dy2 - dx2 * dy1);
0289:                    tx.m20 = (dx3 * dy2 - dx2 * dy3) * invdet;
0290:                    tx.m21 = (dx1 * dy3 - dx3 * dy1) * invdet;
0291:                    tx.m00 = x1 - x0 + tx.m20 * x1;
0292:                    tx.m01 = x3 - x0 + tx.m21 * x3;
0293:                    tx.m02 = x0;
0294:                    tx.m10 = y1 - y0 + tx.m20 * y1;
0295:                    tx.m11 = y3 - y0 + tx.m21 * y3;
0296:                    tx.m12 = y0;
0297:                }
0298:            }
0299:
0300:            /**
0301:             * Creates a PerspectiveTransform that maps the unit square
0302:             * onto an arbitrary quadrilateral.
0303:             *
0304:             * <pre>
0305:             * (0, 0) -> (x0, y0)
0306:             * (1, 0) -> (x1, y1)
0307:             * (1, 1) -> (x2, y2)
0308:             * (0, 1) -> (x3, y3)
0309:             * </pre>
0310:             */
0311:            public static PerspectiveTransform getSquareToQuad(double x0,
0312:                    double y0, double x1, double y1, double x2, double y2,
0313:                    double x3, double y3) {
0314:                PerspectiveTransform tx = new PerspectiveTransform();
0315:                getSquareToQuad(x0, y0, x1, y1, x2, y2, x3, y3, tx);
0316:                return tx;
0317:            }
0318:
0319:            /**
0320:             * Creates a PerspectiveTransform that maps the unit square
0321:             * onto an arbitrary quadrilateral.
0322:             *
0323:             * <pre>
0324:             * (0, 0) -> (x0, y0)
0325:             * (1, 0) -> (x1, y1)
0326:             * (1, 1) -> (x2, y2)
0327:             * (0, 1) -> (x3, y3)
0328:             * </pre>
0329:             */
0330:            public static PerspectiveTransform getSquareToQuad(float x0,
0331:                    float y0, float x1, float y1, float x2, float y2, float x3,
0332:                    float y3) {
0333:                return getSquareToQuad((double) x0, (double) y0, (double) x1,
0334:                        (double) y1, (double) x2, (double) y2, (double) x3,
0335:                        (double) y3);
0336:            }
0337:
0338:            /**
0339:             * Creates a PerspectiveTransform that maps an arbitrary
0340:             * quadrilateral onto the unit square.
0341:             *
0342:             * <pre>
0343:             * (x0, y0) -> (0, 0)
0344:             * (x1, y1) -> (1, 0)
0345:             * (x2, y2) -> (1, 1)
0346:             * (x3, y3) -> (0, 1)
0347:             * </pre>
0348:             */
0349:            public static PerspectiveTransform getQuadToSquare(double x0,
0350:                    double y0, double x1, double y1, double x2, double y2,
0351:                    double x3, double y3) {
0352:                PerspectiveTransform tx = new PerspectiveTransform();
0353:                getSquareToQuad(x0, y0, x1, y1, x2, y2, x3, y3, tx);
0354:                tx.makeAdjoint();
0355:                return tx;
0356:            }
0357:
0358:            /**
0359:             * Creates a PerspectiveTransform that maps an arbitrary
0360:             * quadrilateral onto the unit square.
0361:             *
0362:             * <pre>
0363:             * (x0, y0) -> (0, 0)
0364:             * (x1, y1) -> (1, 0)
0365:             * (x2, y2) -> (1, 1)
0366:             * (x3, y3) -> (0, 1)
0367:             * </pre>
0368:             */
0369:            public static PerspectiveTransform getQuadToSquare(float x0,
0370:                    float y0, float x1, float y1, float x2, float y2, float x3,
0371:                    float y3) {
0372:                return getQuadToSquare((double) x0, (double) y0, (double) x1,
0373:                        (double) y1, (double) x2, (double) y2, (double) x3,
0374:                        (double) y3);
0375:            }
0376:
0377:            /**
0378:             * Creates a PerspectiveTransform that maps an arbitrary
0379:             * quadrilateral onto another arbitrary quadrilateral.
0380:             *
0381:             * <pre>
0382:             * (x0, y0) -> (x0p, y0p)
0383:             * (x1, y1) -> (x1p, y1p)
0384:             * (x2, y2) -> (x2p, y2p)
0385:             * (x3, y3) -> (x3p, y3p)
0386:             * </pre>
0387:             */
0388:            public static PerspectiveTransform getQuadToQuad(double x0,
0389:                    double y0, double x1, double y1, double x2, double y2,
0390:                    double x3, double y3, double x0p, double y0p, double x1p,
0391:                    double y1p, double x2p, double y2p, double x3p, double y3p) {
0392:                PerspectiveTransform tx1 = getQuadToSquare(x0, y0, x1, y1, x2,
0393:                        y2, x3, y3);
0394:
0395:                PerspectiveTransform tx2 = getSquareToQuad(x0p, y0p, x1p, y1p,
0396:                        x2p, y2p, x3p, y3p);
0397:
0398:                tx1.concatenate(tx2);
0399:                return tx1;
0400:            }
0401:
0402:            /**
0403:             * Creates a PerspectiveTransform that maps an arbitrary
0404:             * quadrilateral onto another arbitrary quadrilateral.
0405:             *
0406:             * <pre>
0407:             * (x0, y0) -> (x0p, y0p)
0408:             * (x1, y1) -> (x1p, y1p)
0409:             * (x2, y2) -> (x2p, y2p)
0410:             * (x3, y3) -> (x3p, y3p)
0411:             * </pre>
0412:             */
0413:            public static PerspectiveTransform getQuadToQuad(float x0,
0414:                    float y0, float x1, float y1, float x2, float y2, float x3,
0415:                    float y3, float x0p, float y0p, float x1p, float y1p,
0416:                    float x2p, float y2p, float x3p, float y3p) {
0417:                return getQuadToQuad((double) x0, (double) y0, (double) x1,
0418:                        (double) y1, (double) x2, (double) y2, (double) x3,
0419:                        (double) y3, (double) x0p, (double) y0p, (double) x1p,
0420:                        (double) y1p, (double) x2p, (double) y2p, (double) x3p,
0421:                        (double) y3p);
0422:            }
0423:
0424:            /**
0425:             * Returns the determinant of the matrix representation of the
0426:             * transform.
0427:             */
0428:            public double getDeterminant() {
0429:                return ((m00 * ((m11 * m22) - (m12 * m21)))
0430:                        - (m01 * ((m10 * m22) - (m12 * m20))) + (m02 * ((m10 * m21) - (m11 * m20))));
0431:
0432:            }
0433:
0434:            /**
0435:             * Retrieves the 9 specifiable values in the 3x3 affine
0436:             * transformation matrix into an array of double precision values.
0437:             * The values are stored into the array as
0438:             * { m00 m01 m02 m10 m11 m12 m20 m21 m22 }.
0439:             *
0440:             * @param flatmatrix The double array used to store the returned
0441:             *        values.  The length of the array is assumed to be at
0442:             *        least 9.
0443:             * @throws ArrayIndexOutOfBoundsException if flatmatrix is too small
0444:             * @deprecated as of JAI 1.1 Use double[][] getMatrix(double[][] matrix) instead.
0445:             */
0446:            public double[] getMatrix(double[] flatmatrix) {
0447:                if (flatmatrix == null) {
0448:                    flatmatrix = new double[9];
0449:                }
0450:
0451:                flatmatrix[0] = m00;
0452:                flatmatrix[1] = m01;
0453:                flatmatrix[2] = m02;
0454:                flatmatrix[3] = m10;
0455:                flatmatrix[4] = m11;
0456:                flatmatrix[5] = m12;
0457:                flatmatrix[6] = m20;
0458:                flatmatrix[7] = m21;
0459:                flatmatrix[8] = m22;
0460:
0461:                return flatmatrix;
0462:            }
0463:
0464:            /**
0465:             * Retrieves the 9 specifiable values in the 3x3 affine
0466:             * transformation matrix into a 2-dimensional array of double
0467:             * precision values.  The values are stored into the 2-dimensional
0468:             * array using the row index as the first subscript and the column
0469:             * index as the second.
0470:             *
0471:             * @param matrix The 2-dimensional double array to store the
0472:             *        returned values.  The array is assumed to be at least 3x3.
0473:             * @throws ArrayIndexOutOfBoundsException if matrix is too small
0474:             */
0475:            public double[][] getMatrix(double[][] matrix) {
0476:                if (matrix == null) {
0477:                    matrix = new double[3][3];
0478:                }
0479:
0480:                matrix[0][0] = m00;
0481:                matrix[0][1] = m01;
0482:                matrix[0][2] = m02;
0483:                matrix[1][0] = m10;
0484:                matrix[1][1] = m11;
0485:                matrix[1][2] = m12;
0486:                matrix[2][0] = m20;
0487:                matrix[2][1] = m21;
0488:                matrix[2][2] = m22;
0489:
0490:                return matrix;
0491:            }
0492:
0493:            /**
0494:             * Concatenates this transform with a translation transformation.
0495:             * This is equivalent to calling concatenate(T), where T is an
0496:             * PerspectiveTransform represented by the following matrix:
0497:             * <pre>
0498:             *		[   1    0    tx  ]
0499:             *		[   0    1    ty  ]
0500:             *		[   0    0    1   ]
0501:             * </pre>
0502:             */
0503:            public void translate(double tx, double ty) {
0504:                PerspectiveTransform Tx = new PerspectiveTransform();
0505:                Tx.setToTranslation(tx, ty);
0506:                concatenate(Tx);
0507:            }
0508:
0509:            /**
0510:             * Concatenates this transform with a rotation transformation.
0511:             * This is equivalent to calling concatenate(R), where R is an
0512:             * PerspectiveTransform represented by the following matrix:
0513:             * <pre>
0514:             *		[   cos(theta)    -sin(theta)    0   ]
0515:             *		[   sin(theta)     cos(theta)    0   ]
0516:             *		[       0              0         1   ]
0517:             * </pre>
0518:             * Rotating with a positive angle theta rotates points on the positive
0519:             * X axis toward the positive Y axis.
0520:             *
0521:             * @param theta The angle of rotation in radians.
0522:             */
0523:            public void rotate(double theta) {
0524:                PerspectiveTransform Tx = new PerspectiveTransform();
0525:                Tx.setToRotation(theta);
0526:                concatenate(Tx);
0527:            }
0528:
0529:            /**
0530:             * Concatenates this transform with a translated rotation transformation.
0531:             * This is equivalent to the following sequence of calls:
0532:             * <pre>
0533:             *		translate(x, y);
0534:             *		rotate(theta);
0535:             *		translate(-x, -y);
0536:             * </pre>
0537:             * Rotating with a positive angle theta rotates points on the positive
0538:             * X axis toward the positive Y axis.
0539:             *
0540:             * @param theta The angle of rotation in radians.
0541:             * @param x The X coordinate of the origin of the rotation
0542:             * @param y The Y coordinate of the origin of the rotation
0543:             */
0544:            public void rotate(double theta, double x, double y) {
0545:                PerspectiveTransform Tx = new PerspectiveTransform();
0546:                Tx.setToRotation(theta, x, y);
0547:                concatenate(Tx);
0548:            }
0549:
0550:            /**
0551:             * Concatenates this transform with a scaling transformation.
0552:             * This is equivalent to calling concatenate(S), where S is an
0553:             * PerspectiveTransform represented by the following matrix:
0554:             * <pre>
0555:             *		[   sx   0    0   ]
0556:             *		[   0    sy   0   ]
0557:             *		[   0    0    1   ]
0558:             * </pre>
0559:             *
0560:             * @param sx The X axis scale factor.
0561:             * @param sy The Y axis scale factor.
0562:             */
0563:            public void scale(double sx, double sy) {
0564:                PerspectiveTransform Tx = new PerspectiveTransform();
0565:                Tx.setToScale(sx, sy);
0566:                concatenate(Tx);
0567:            }
0568:
0569:            /**
0570:             * Concatenates this transform with a shearing transformation.
0571:             * This is equivalent to calling concatenate(SH), where SH is an
0572:             * PerspectiveTransform represented by the following matrix:
0573:             * <pre>
0574:             *		[   1   shx   0   ]
0575:             *		[  shy   1    0   ]
0576:             *		[   0    0    1   ]
0577:             * </pre>
0578:             *
0579:             * @param shx The factor by which coordinates are shifted towards
0580:             *        the positive X axis direction according to their Y
0581:             *        coordinate.
0582:             * @param shy The factor by which coordinates are shifted towards
0583:             *        the positive Y axis direction according to their X
0584:             *        coordinate.
0585:             */
0586:            public void shear(double shx, double shy) {
0587:                PerspectiveTransform Tx = new PerspectiveTransform();
0588:                Tx.setToShear(shx, shy);
0589:                concatenate(Tx);
0590:            }
0591:
0592:            /**
0593:             * Resets this transform to the Identity transform.
0594:             */
0595:            public void setToIdentity() {
0596:                m00 = m11 = m22 = 1.0;
0597:                m01 = m10 = m02 = m20 = m12 = m21 = 0.0;
0598:            }
0599:
0600:            /**
0601:             * Sets this transform to a translation transformation.
0602:             * The matrix representing this transform becomes:
0603:             * <pre>
0604:             *		[   1    0    tx  ]
0605:             *		[   0    1    ty  ]
0606:             *		[   0    0    1   ]
0607:             * </pre>
0608:             * @param tx The distance by which coordinates are translated in the
0609:             * X axis direction
0610:             * @param ty The distance by which coordinates are translated in the
0611:             * Y axis direction
0612:             */
0613:            public void setToTranslation(double tx, double ty) {
0614:                m00 = 1.0;
0615:                m01 = 0.0;
0616:                m02 = tx;
0617:                m10 = 0.0;
0618:                m11 = 1.0;
0619:                m12 = ty;
0620:                m20 = 0.0;
0621:                m21 = 0.0;
0622:                m22 = 1.0;
0623:            }
0624:
0625:            /**
0626:             * Sets this transform to a rotation transformation.
0627:             * The matrix representing this transform becomes:
0628:             * <pre>
0629:             *		[   cos(theta)    -sin(theta)    0   ]
0630:             *		[   sin(theta)     cos(theta)    0   ]
0631:             *		[       0              0         1   ]
0632:             * </pre>
0633:             * Rotating with a positive angle theta rotates points on the positive
0634:             * X axis toward the positive Y axis.
0635:             * @param theta The angle of rotation in radians.
0636:             */
0637:            public void setToRotation(double theta) {
0638:                m00 = Math.cos(theta);
0639:                m01 = -Math.sin(theta);
0640:                m02 = 0.0;
0641:                m10 = -m01; // Math.sin(theta);
0642:                m11 = m00; // Math.cos(theta);
0643:                m12 = 0.0;
0644:                m20 = 0.0;
0645:                m21 = 0.0;
0646:                m22 = 1.0;
0647:            }
0648:
0649:            /**
0650:             * Sets this transform to a rotation transformation
0651:             * about a specified point (x, y).  This is equivalent
0652:             * to the following sequence of calls:
0653:             *
0654:             * <pre>
0655:             *		setToTranslate(x, y);
0656:             *		rotate(theta);
0657:             *		translate(-x, -y);
0658:             * </pre>
0659:             *
0660:             * Rotating with a positive angle theta rotates points on the positive
0661:             * X axis toward the positive Y axis.
0662:             *
0663:             * @param theta The angle of rotation in radians.
0664:             * @param x The X coordinate of the origin of the rotation
0665:             * @param y The Y coordinate of the origin of the rotation
0666:             */
0667:            public void setToRotation(double theta, double x, double y) {
0668:                setToRotation(theta);
0669:                double sin = m10;
0670:                double oneMinusCos = 1.0 - m00;
0671:                m02 = x * oneMinusCos + y * sin;
0672:                m12 = y * oneMinusCos - x * sin;
0673:            }
0674:
0675:            /**
0676:             * Sets this transform to a scale transformation
0677:             * with scale factors sx and sy.
0678:             * The matrix representing this transform becomes:
0679:             * <pre>
0680:             *		[   sx   0    0   ]
0681:             *		[   0    sy   0   ]
0682:             *		[   0    0    1   ]
0683:             * </pre>
0684:             *
0685:             * @param sx The X axis scale factor.
0686:             * @param sy The Y axis scale factor.
0687:             */
0688:            public void setToScale(double sx, double sy) {
0689:                m00 = sx;
0690:                m01 = 0.0;
0691:                m02 = 0.0;
0692:                m10 = 0.0;
0693:                m11 = sy;
0694:                m12 = 0.0;
0695:                m20 = 0.0;
0696:                m21 = 0.0;
0697:                m22 = 1.0;
0698:            }
0699:
0700:            /**
0701:             * Sets this transform to a shearing transformation
0702:             * with shear factors sx and sy.
0703:             * The matrix representing this transform becomes:
0704:             * <pre>
0705:             *		[   1  shx    0   ]
0706:             *		[ shy    1    0   ]
0707:             *		[   0    0    1   ]
0708:             * </pre>
0709:             *
0710:             * @param shx The factor by which coordinates are shifted towards
0711:             *        the positive X axis direction according to their Y
0712:             *        coordinate.
0713:             * @param shy The factor by which coordinates are shifted towards
0714:             *        the positive Y axis direction according to their X
0715:             *        coordinate.
0716:             */
0717:            public void setToShear(double shx, double shy) {
0718:                m00 = 1.0;
0719:                m01 = shx;
0720:                m02 = 0.0;
0721:                m10 = shy;
0722:                m11 = 1.0;
0723:                m12 = 0.0;
0724:                m20 = 0.0;
0725:                m21 = 0.0;
0726:                m22 = 1.0;
0727:            }
0728:
0729:            /**
0730:             * Sets this transform to a given AffineTransform.
0731:             * @throws IllegalArgumentException if Tx is null
0732:             */
0733:            public void setTransform(AffineTransform Tx) {
0734:                if (Tx == null) {
0735:                    throw new IllegalArgumentException(JaiI18N
0736:                            .getString("Generic0"));
0737:                }
0738:
0739:                m00 = Tx.getScaleX();
0740:                m01 = Tx.getShearX();
0741:                m02 = Tx.getTranslateX();
0742:                m10 = Tx.getShearY();
0743:                m11 = Tx.getScaleY();
0744:                m12 = Tx.getTranslateY();
0745:                m20 = 0.0;
0746:                m21 = 0.0;
0747:                m22 = 1.0;
0748:            }
0749:
0750:            /**
0751:             * Sets this transform to a given PerspectiveTransform.
0752:             * @throws IllegalArgumentException if Tx is null
0753:             */
0754:            public void setTransform(PerspectiveTransform Tx) {
0755:                if (Tx == null) {
0756:                    throw new IllegalArgumentException(JaiI18N
0757:                            .getString("Generic0"));
0758:                }
0759:
0760:                m00 = Tx.m00;
0761:                m01 = Tx.m01;
0762:                m02 = Tx.m02;
0763:                m10 = Tx.m10;
0764:                m11 = Tx.m11;
0765:                m12 = Tx.m12;
0766:                m20 = Tx.m20;
0767:                m21 = Tx.m21;
0768:                m22 = Tx.m22;
0769:            }
0770:
0771:            /**
0772:             * Sets this transform to a given PerspectiveTransform,
0773:             * expressed by the elements of its matrix.  <i>Important Note: The
0774:             * matrix elements in the argument list are in column-major order
0775:             * unlike those of the constructor, which are in row-major order.</i>
0776:             * @deprecated as of JAI 1.1 Use double[][] getMatrix(double[][] matrix) instead.
0777:             */
0778:            public void setTransform(float m00, float m10, float m20,
0779:                    float m01, float m11, float m21, float m02, float m12,
0780:                    float m22) {
0781:                this .m00 = (double) m00;
0782:                this .m01 = (double) m01;
0783:                this .m02 = (double) m02;
0784:                this .m10 = (double) m10;
0785:                this .m11 = (double) m11;
0786:                this .m12 = (double) m12;
0787:                this .m20 = (double) m20;
0788:                this .m21 = (double) m21;
0789:                this .m22 = (double) m22;
0790:            }
0791:
0792:            /**
0793:             * Sets this transform using a two-dimensional array of double precision
0794:             * values.  The row index is first, and the column index is second.
0795:             *
0796:             * @param matrix The 2D double array to be used for setting this transform.
0797:             *        The array is assumed to be at least 3x3.
0798:             * @throws IllegalArgumentException if matrix is null
0799:             * @throws ArrayIndexOutOfBoundsException if matrix is too small
0800:             * @since JAI 1.1
0801:             */
0802:            public void setTransform(double[][] matrix) {
0803:                if (matrix == null) {
0804:                    throw new IllegalArgumentException(JaiI18N
0805:                            .getString("Generic0"));
0806:                }
0807:
0808:                m00 = matrix[0][0];
0809:                m01 = matrix[0][1];
0810:                m02 = matrix[0][2];
0811:                m10 = matrix[1][0];
0812:                m11 = matrix[1][1];
0813:                m12 = matrix[1][2];
0814:                m20 = matrix[2][0];
0815:                m21 = matrix[2][1];
0816:                m22 = matrix[2][2];
0817:            }
0818:
0819:            /**
0820:             * Post-concatenates a given AffineTransform to this transform.
0821:             * @throws IllegalArgumentException if Tx is null
0822:             */
0823:            public void concatenate(AffineTransform Tx) {
0824:                if (Tx == null) {
0825:                    throw new IllegalArgumentException(JaiI18N
0826:                            .getString("Generic0"));
0827:                }
0828:
0829:                // Extend Tx: Tx.m20 = 0, Tx.m21 = 0, Tx.m22 = 1
0830:
0831:                double tx_m00 = Tx.getScaleX();
0832:                double tx_m01 = Tx.getShearX();
0833:                double tx_m02 = Tx.getTranslateX();
0834:                double tx_m10 = Tx.getShearY();
0835:                double tx_m11 = Tx.getScaleY();
0836:                double tx_m12 = Tx.getTranslateY();
0837:
0838:                double m00p = m00 * tx_m00 + m10 * tx_m01 + m20 * tx_m02;
0839:                double m01p = m01 * tx_m00 + m11 * tx_m01 + m21 * tx_m02;
0840:                double m02p = m02 * tx_m00 + m12 * tx_m01 + m22 * tx_m02;
0841:                double m10p = m00 * tx_m10 + m10 * tx_m11 + m20 * tx_m12;
0842:                double m11p = m01 * tx_m10 + m11 * tx_m11 + m21 * tx_m12;
0843:                double m12p = m02 * tx_m10 + m12 * tx_m11 + m22 * tx_m12;
0844:                double m20p = m20;
0845:                double m21p = m21;
0846:                double m22p = m22;
0847:
0848:                m00 = m00p;
0849:                m10 = m10p;
0850:                m20 = m20p;
0851:                m01 = m01p;
0852:                m11 = m11p;
0853:                m21 = m21p;
0854:                m02 = m02p;
0855:                m12 = m12p;
0856:                m22 = m22p;
0857:            }
0858:
0859:            /**
0860:             * Post-concatenates a given PerspectiveTransform to this transform.
0861:             * @throws IllegalArgumentException if Tx is null
0862:             */
0863:            public void concatenate(PerspectiveTransform Tx) {
0864:                if (Tx == null) {
0865:                    throw new IllegalArgumentException(JaiI18N
0866:                            .getString("Generic0"));
0867:                }
0868:
0869:                double m00p = m00 * Tx.m00 + m10 * Tx.m01 + m20 * Tx.m02;
0870:                double m10p = m00 * Tx.m10 + m10 * Tx.m11 + m20 * Tx.m12;
0871:                double m20p = m00 * Tx.m20 + m10 * Tx.m21 + m20 * Tx.m22;
0872:                double m01p = m01 * Tx.m00 + m11 * Tx.m01 + m21 * Tx.m02;
0873:                double m11p = m01 * Tx.m10 + m11 * Tx.m11 + m21 * Tx.m12;
0874:                double m21p = m01 * Tx.m20 + m11 * Tx.m21 + m21 * Tx.m22;
0875:                double m02p = m02 * Tx.m00 + m12 * Tx.m01 + m22 * Tx.m02;
0876:                double m12p = m02 * Tx.m10 + m12 * Tx.m11 + m22 * Tx.m12;
0877:                double m22p = m02 * Tx.m20 + m12 * Tx.m21 + m22 * Tx.m22;
0878:
0879:                m00 = m00p;
0880:                m10 = m10p;
0881:                m20 = m20p;
0882:                m01 = m01p;
0883:                m11 = m11p;
0884:                m21 = m21p;
0885:                m02 = m02p;
0886:                m12 = m12p;
0887:                m22 = m22p;
0888:            }
0889:
0890:            /**
0891:             * Pre-concatenates a given AffineTransform to this transform.
0892:             * @throws IllegalArgumentException if Tx is null
0893:             */
0894:            public void preConcatenate(AffineTransform Tx) {
0895:                if (Tx == null) {
0896:                    throw new IllegalArgumentException(JaiI18N
0897:                            .getString("Generic0"));
0898:                }
0899:
0900:                // Extend Tx: Tx.m20 = 0, Tx.m21 = 0, Tx.m22 = 1
0901:
0902:                double tx_m00 = Tx.getScaleX();
0903:                double tx_m01 = Tx.getShearX();
0904:                double tx_m02 = Tx.getTranslateX();
0905:                double tx_m10 = Tx.getShearY();
0906:                double tx_m11 = Tx.getScaleY();
0907:                double tx_m12 = Tx.getTranslateY();
0908:
0909:                double m00p = tx_m00 * m00 + tx_m10 * m01;
0910:                double m01p = tx_m01 * m00 + tx_m11 * m01;
0911:                double m02p = tx_m02 * m00 + tx_m12 * m01 + m02;
0912:                double m10p = tx_m00 * m10 + tx_m10 * m11;
0913:                double m11p = tx_m01 * m10 + tx_m11 * m11;
0914:                double m12p = tx_m02 * m10 + tx_m12 * m11 + m12;
0915:                double m20p = tx_m00 * m20 + tx_m10 * m21;
0916:                double m21p = tx_m01 * m20 + tx_m11 * m21;
0917:                double m22p = tx_m02 * m20 + tx_m12 * m21 + m22;
0918:
0919:                m00 = m00p;
0920:                m10 = m10p;
0921:                m20 = m20p;
0922:                m01 = m01p;
0923:                m11 = m11p;
0924:                m21 = m21p;
0925:                m02 = m02p;
0926:                m12 = m12p;
0927:                m22 = m22p;
0928:            }
0929:
0930:            /**
0931:             * Pre-concatenates a given PerspectiveTransform to this transform.
0932:             * @throws IllegalArgumentException if Tx is null
0933:             */
0934:            public void preConcatenate(PerspectiveTransform Tx) {
0935:                if (Tx == null) {
0936:                    throw new IllegalArgumentException(JaiI18N
0937:                            .getString("Generic0"));
0938:                }
0939:
0940:                double m00p = Tx.m00 * m00 + Tx.m10 * m01 + Tx.m20 * m02;
0941:                double m10p = Tx.m00 * m10 + Tx.m10 * m11 + Tx.m20 * m12;
0942:                double m20p = Tx.m00 * m20 + Tx.m10 * m21 + Tx.m20 * m22;
0943:                double m01p = Tx.m01 * m00 + Tx.m11 * m01 + Tx.m21 * m02;
0944:                double m11p = Tx.m01 * m10 + Tx.m11 * m11 + Tx.m21 * m12;
0945:                double m21p = Tx.m01 * m20 + Tx.m11 * m21 + Tx.m21 * m22;
0946:                double m02p = Tx.m02 * m00 + Tx.m12 * m01 + Tx.m22 * m02;
0947:                double m12p = Tx.m02 * m10 + Tx.m12 * m11 + Tx.m22 * m12;
0948:                double m22p = Tx.m02 * m20 + Tx.m12 * m21 + Tx.m22 * m22;
0949:
0950:                m00 = m00p;
0951:                m10 = m10p;
0952:                m20 = m20p;
0953:                m01 = m01p;
0954:                m11 = m11p;
0955:                m21 = m21p;
0956:                m02 = m02p;
0957:                m12 = m12p;
0958:                m22 = m22p;
0959:            }
0960:
0961:            /**
0962:             * Returns a new PerpectiveTransform that is the inverse
0963:             * of the current transform.
0964:             * @throws NoninvertibleTransformException if transform cannot be inverted
0965:             */
0966:            public PerspectiveTransform createInverse()
0967:                    throws NoninvertibleTransformException,
0968:                    CloneNotSupportedException {
0969:
0970:                PerspectiveTransform tx = (PerspectiveTransform) clone();
0971:                tx.makeAdjoint();
0972:                if (Math.abs(tx.m22) < PERSPECTIVE_DIVIDE_EPSILON) {
0973:                    throw new NoninvertibleTransformException(JaiI18N
0974:                            .getString("PerspectiveTransform0"));
0975:                }
0976:                tx.normalize();
0977:                return tx;
0978:            }
0979:
0980:            /**
0981:             * Returns a new PerpectiveTransform that is the adjoint,
0982:             * of the current transform.  The adjoint is defined as
0983:             * the matrix of cofactors, which in turn are the determinants
0984:             * of the submatrices defined by removing the row and column
0985:             * of each element from the original matrix in turn.
0986:             *
0987:             * <p> The adjoint is a scalar multiple of the inverse matrix.
0988:             * Because points to be transformed are converted into homogeneous
0989:             * coordinates, where scalar factors are irrelevant, the adjoint
0990:             * may be used in place of the true inverse. Since it is unnecessary
0991:             * to normalize the adjoint, it is both faster to compute and more
0992:             * numerically stable than the true inverse.
0993:             */
0994:            public PerspectiveTransform createAdjoint()
0995:                    throws CloneNotSupportedException {
0996:
0997:                PerspectiveTransform tx = (PerspectiveTransform) clone();
0998:                tx.makeAdjoint();
0999:                return tx;
1000:            }
1001:
1002:            /**
1003:             * Transforms the specified ptSrc and stores the result in ptDst.
1004:             * If ptDst is null, a new Point2D object will be allocated before
1005:             * storing. In either case, ptDst containing the transformed point
1006:             * is returned for convenience.
1007:             * Note that ptSrc and ptDst can the same. In this case, the input
1008:             * point will be overwritten with the transformed point.
1009:             *
1010:             * @param ptSrc The array containing the source point objects.
1011:             * @param ptDst The array where the transform point objects are returned.
1012:             * @throws IllegalArgumentException if ptSrc is null
1013:             */
1014:            public Point2D transform(Point2D ptSrc, Point2D ptDst) {
1015:                if (ptSrc == null) {
1016:                    throw new IllegalArgumentException(JaiI18N
1017:                            .getString("Generic0"));
1018:                }
1019:
1020:                if (ptDst == null) {
1021:                    if (ptSrc instanceof  Point2D.Double) {
1022:                        ptDst = new Point2D.Double();
1023:                    } else {
1024:                        ptDst = new Point2D.Float();
1025:                    }
1026:                }
1027:
1028:                double x = ptSrc.getX();
1029:                double y = ptSrc.getY();
1030:                double w = m20 * x + m21 * y + m22;
1031:                ptDst.setLocation((m00 * x + m01 * y + m02) / w, (m10 * x + m11
1032:                        * y + m12)
1033:                        / w);
1034:
1035:                return ptDst;
1036:            }
1037:
1038:            /**
1039:             * Transforms an array of point objects by this transform.
1040:             * @param ptSrc The array containing the source point objects.
1041:             * @param ptDst The array where the transform point objects are returned.
1042:             * @param srcOff The offset to the first point object to be transformed
1043:             * in the source array.
1044:             * @param dstOff The offset to the location where the first transformed
1045:             * point object is stored in the destination array.
1046:             * @param numPts The number of point objects to be transformed.
1047:             * @throws IllegalArgumentException if ptSrc is null
1048:             * @throws IllegalArgumentException if ptDst is null
1049:             * @throws ArrayIndexOutOfBoundsException if ptSrc is too small
1050:             */
1051:            public void transform(Point2D[] ptSrc, int srcOff, Point2D[] ptDst,
1052:                    int dstOff, int numPts) {
1053:
1054:                if (ptSrc == null || ptDst == null) {
1055:                    throw new IllegalArgumentException(JaiI18N
1056:                            .getString("Generic0"));
1057:                }
1058:
1059:                while (numPts-- > 0) {
1060:                    /* Copy source coords into local variables in case src == dst. */
1061:                    Point2D src = ptSrc[srcOff++];
1062:                    Point2D dst = ptDst[dstOff++];
1063:                    if (dst == null) {
1064:                        if (src instanceof  Point2D.Double) {
1065:                            dst = new Point2D.Double();
1066:                        } else {
1067:                            dst = new Point2D.Float();
1068:                        }
1069:                        ptDst[dstOff - 1] = dst;
1070:                    }
1071:
1072:                    double x = src.getX();
1073:                    double y = src.getY();
1074:                    double w = m20 * x + m21 * y + m22;
1075:
1076:                    if (w == 0) {
1077:                        dst.setLocation(x, y);
1078:                    } else {
1079:                        dst.setLocation((m00 * x + m01 * y + m02) / w, (m10 * x
1080:                                + m11 * y + m12)
1081:                                / w);
1082:                    }
1083:                }
1084:            }
1085:
1086:            /**
1087:             * Transforms an array of floating point coordinates by this transform.
1088:             * @param srcPts The array containing the source point coordinates.
1089:             * Each point is stored as a pair of x,y coordinates.
1090:             * @param srcOff The offset to the first point to be transformed
1091:             * in the source array.
1092:             * @param dstPts The array where the transformed point coordinates are
1093:             * returned.  Each point is stored as a pair of x,y coordinates.
1094:             * @param dstOff The offset to the location where the first transformed
1095:             * point is stored in the destination array.
1096:             * @param numPts The number of points to be transformed.
1097:             * @throws IllegalArgumentException if srcPts is null
1098:             * @throws ArrayIndexOutOfBoundsException if srcPts is too small
1099:             */
1100:            public void transform(float[] srcPts, int srcOff, float[] dstPts,
1101:                    int dstOff, int numPts) {
1102:
1103:                if (srcPts == null) {
1104:                    throw new IllegalArgumentException(JaiI18N
1105:                            .getString("Generic0"));
1106:                }
1107:
1108:                if (dstPts == null) {
1109:                    dstPts = new float[numPts * 2 + dstOff];
1110:                }
1111:
1112:                while (numPts-- > 0) {
1113:                    float x = srcPts[srcOff++];
1114:                    float y = srcPts[srcOff++];
1115:                    double w = m20 * x + m21 * y + m22;
1116:
1117:                    if (w == 0) {
1118:                        dstPts[dstOff++] = x;
1119:                        dstPts[dstOff++] = y;
1120:                    } else {
1121:                        dstPts[dstOff++] = (float) ((m00 * x + m01 * y + m02) / w);
1122:                        dstPts[dstOff++] = (float) ((m10 * x + m11 * y + m12) / w);
1123:                    }
1124:                }
1125:            }
1126:
1127:            /**
1128:             * Transforms an array of double precision coordinates by this transform.
1129:             * @param srcPts The array containing the source point coordinates.
1130:             * Each point is stored as a pair of x,y coordinates.
1131:             * @param dstPts The array where the transformed point coordinates are
1132:             * returned.  Each point is stored as a pair of x,y coordinates.
1133:             * @param srcOff The offset to the first point to be transformed
1134:             * in the source array.
1135:             * @param dstOff The offset to the location where the first transformed
1136:             * point is stored in the destination array.
1137:             * @param numPts The number of point objects to be transformed.
1138:             * @throws IllegalArgumentException if srcPts is null
1139:             * @throws ArrayIndexOutOfBoundsException if srcPts is too small
1140:             */
1141:            public void transform(double[] srcPts, int srcOff, double[] dstPts,
1142:                    int dstOff, int numPts) {
1143:
1144:                if (srcPts == null) {
1145:                    throw new IllegalArgumentException(JaiI18N
1146:                            .getString("Generic0"));
1147:                }
1148:
1149:                if (dstPts == null) {
1150:                    dstPts = new double[numPts * 2 + dstOff];
1151:                }
1152:
1153:                while (numPts-- > 0) {
1154:                    double x = srcPts[srcOff++];
1155:                    double y = srcPts[srcOff++];
1156:                    double w = m20 * x + m21 * y + m22;
1157:
1158:                    if (w == 0) {
1159:                        dstPts[dstOff++] = x;
1160:                        dstPts[dstOff++] = y;
1161:                    } else {
1162:                        dstPts[dstOff++] = (m00 * x + m01 * y + m02) / w;
1163:                        dstPts[dstOff++] = (m10 * x + m11 * y + m12) / w;
1164:                    }
1165:                }
1166:            }
1167:
1168:            /**
1169:             * Transforms an array of floating point coordinates by this transform,
1170:             * storing the results into an array of doubles.
1171:             * @param srcPts The array containing the source point coordinates.
1172:             * Each point is stored as a pair of x,y coordinates.
1173:             * @param srcOff The offset to the first point to be transformed
1174:             * in the source array.
1175:             * @param dstPts The array where the transformed point coordinates are
1176:             * returned.  Each point is stored as a pair of x,y coordinates.
1177:             * @param dstOff The offset to the location where the first transformed
1178:             * point is stored in the destination array.
1179:             * @param numPts The number of points to be transformed.
1180:             * @throws IllegalArgumentException if srcPts is null
1181:             * @throws ArrayIndexOutOfBoundsException if srcPts is too small
1182:             */
1183:            public void transform(float[] srcPts, int srcOff, double[] dstPts,
1184:                    int dstOff, int numPts) {
1185:
1186:                if (srcPts == null) {
1187:                    throw new IllegalArgumentException(JaiI18N
1188:                            .getString("Generic0"));
1189:                }
1190:
1191:                if (dstPts == null) {
1192:                    dstPts = new double[numPts * 2 + dstOff];
1193:                }
1194:
1195:                while (numPts-- > 0) {
1196:                    float x = srcPts[srcOff++];
1197:                    float y = srcPts[srcOff++];
1198:                    double w = m20 * x + m21 * y + m22;
1199:
1200:                    if (w == 0) {
1201:                        dstPts[dstOff++] = x;
1202:                        dstPts[dstOff++] = y;
1203:                    } else {
1204:                        dstPts[dstOff++] = (m00 * x + m01 * y + m02) / w;
1205:                        dstPts[dstOff++] = (m10 * x + m11 * y + m12) / w;
1206:                    }
1207:                }
1208:            }
1209:
1210:            /**
1211:             * Transforms an array of double precision coordinates by this transform,
1212:             * storing the results into an array of floats.
1213:             * @param srcPts The array containing the source point coordinates.
1214:             * Each point is stored as a pair of x,y coordinates.
1215:             * @param dstPts The array where the transformed point coordinates are
1216:             * returned.  Each point is stored as a pair of x,y coordinates.
1217:             * @param srcOff The offset to the first point to be transformed
1218:             * in the source array.
1219:             * @param dstOff The offset to the location where the first transformed
1220:             * point is stored in the destination array.
1221:             * @param numPts The number of point objects to be transformed.
1222:             * @throws IllegalArgumentException if srcPts is null
1223:             * @throws ArrayIndexOutOfBoundsException if srcPts is too small
1224:             */
1225:            public void transform(double[] srcPts, int srcOff, float[] dstPts,
1226:                    int dstOff, int numPts) {
1227:
1228:                if (srcPts == null) {
1229:                    throw new IllegalArgumentException(JaiI18N
1230:                            .getString("Generic0"));
1231:                }
1232:
1233:                if (dstPts == null) {
1234:                    dstPts = new float[numPts * 2 + dstOff];
1235:                }
1236:
1237:                while (numPts-- > 0) {
1238:                    double x = srcPts[srcOff++];
1239:                    double y = srcPts[srcOff++];
1240:                    double w = m20 * x + m21 * y + m22;
1241:
1242:                    if (w == 0) {
1243:                        dstPts[dstOff++] = (float) x;
1244:                        dstPts[dstOff++] = (float) y;
1245:                    } else {
1246:                        dstPts[dstOff++] = (float) ((m00 * x + m01 * y + m02) / w);
1247:                        dstPts[dstOff++] = (float) ((m10 * x + m11 * y + m12) / w);
1248:                    }
1249:                }
1250:            }
1251:
1252:            /**
1253:             * Inverse transforms the specified ptSrc and stores the result in ptDst.
1254:             * If ptDst is null, a new Point2D object will be allocated before
1255:             * storing. In either case, ptDst containing the transformed point
1256:             * is returned for convenience.
1257:             * Note that ptSrc and ptDst can the same. In this case, the input
1258:             * point will be overwritten with the transformed point.
1259:             * @param ptSrc The point to be inverse transformed.
1260:             * @param ptDst The resulting transformed point.
1261:             * @throws NoninvertibleTransformException  if the matrix cannot be
1262:             *                                         inverted.
1263:             * @throws IllegalArgumentException if ptSrc is null
1264:             */
1265:            public Point2D inverseTransform(Point2D ptSrc, Point2D ptDst)
1266:                    throws NoninvertibleTransformException {
1267:                if (ptSrc == null) {
1268:                    throw new IllegalArgumentException(JaiI18N
1269:                            .getString("Generic0"));
1270:                }
1271:
1272:                if (ptDst == null) {
1273:                    if (ptSrc instanceof  Point2D.Double) {
1274:                        ptDst = new Point2D.Double();
1275:                    } else {
1276:                        ptDst = new Point2D.Float();
1277:                    }
1278:                }
1279:                // Copy source coords into local variables in case src == dst
1280:                double x = ptSrc.getX();
1281:                double y = ptSrc.getY();
1282:
1283:                double tmp_x = (m11 * m22 - m12 * m21) * x
1284:                        + (m02 * m21 - m01 * m22) * y + (m01 * m12 - m02 * m11);
1285:                double tmp_y = (m12 * m20 - m10 * m22) * x
1286:                        + (m00 * m22 - m02 * m20) * y + (m02 * m10 - m00 * m12);
1287:                double w = (m10 * m21 - m11 * m20) * x
1288:                        + (m01 * m20 - m00 * m21) * y + (m00 * m11 - m01 * m10);
1289:
1290:                double wabs = w;
1291:                if (w < 0) {
1292:                    wabs = -w;
1293:                }
1294:                if (wabs < PERSPECTIVE_DIVIDE_EPSILON) {
1295:                    throw new NoninvertibleTransformException(JaiI18N
1296:                            .getString("PerspectiveTransform1"));
1297:                }
1298:
1299:                ptDst.setLocation(tmp_x / w, tmp_y / w);
1300:
1301:                return ptDst;
1302:            }
1303:
1304:            /**
1305:             * Inverse transforms an array of double precision coordinates by
1306:             * this transform.
1307:             * @param srcPts The array containing the source point coordinates.
1308:             * Each point is stored as a pair of x,y coordinates.
1309:             * @param dstPts The array where the transformed point coordinates are
1310:             * returned.  Each point is stored as a pair of x,y coordinates.
1311:             * @param srcOff The offset to the first point to be transformed
1312:             * in the source array.
1313:             * @param dstOff The offset to the location where the first transformed
1314:             * point is stored in the destination array.
1315:             * @param numPts The number of point objects to be transformed.
1316:             * @throws NoninvertibleTransformException  if the matrix cannot be
1317:             *                                         inverted.
1318:             * @throws IllegalArgumentException if srcPts is null
1319:             * @throws ArrayIndexOutOfBoundsException if srcPts is too small
1320:             * @throws NoninvertibleTransformException transform cannot be inverted
1321:             */
1322:            public void inverseTransform(double[] srcPts, int srcOff,
1323:                    double[] dstPts, int dstOff, int numPts)
1324:                    throws NoninvertibleTransformException {
1325:                if (srcPts == null) {
1326:                    throw new IllegalArgumentException(JaiI18N
1327:                            .getString("Generic0"));
1328:                }
1329:
1330:                if (dstPts == null) {
1331:                    dstPts = new double[numPts * 2 + dstOff];
1332:                }
1333:
1334:                while (numPts-- > 0) {
1335:                    double x = srcPts[srcOff++];
1336:                    double y = srcPts[srcOff++];
1337:
1338:                    double tmp_x = (m11 * m22 - m12 * m21) * x
1339:                            + (m02 * m21 - m01 * m22) * y
1340:                            + (m01 * m12 - m02 * m11);
1341:                    double tmp_y = (m12 * m20 - m10 * m22) * x
1342:                            + (m00 * m22 - m02 * m20) * y
1343:                            + (m02 * m10 - m00 * m12);
1344:                    double w = (m10 * m21 - m11 * m20) * x
1345:                            + (m01 * m20 - m00 * m21) * y
1346:                            + (m00 * m11 - m01 * m10);
1347:
1348:                    double wabs = w;
1349:                    if (w < 0) {
1350:                        wabs = -w;
1351:                    }
1352:                    if (wabs < PERSPECTIVE_DIVIDE_EPSILON) {
1353:                        throw new NoninvertibleTransformException(JaiI18N
1354:                                .getString("PerspectiveTransform1"));
1355:                    }
1356:
1357:                    dstPts[dstOff++] = tmp_x / w;
1358:                    dstPts[dstOff++] = tmp_y / w;
1359:                }
1360:            }
1361:
1362:            /**
1363:             * Returns a String that represents the value of this Object.
1364:             */
1365:            public String toString() {
1366:                StringBuffer sb = new StringBuffer();
1367:                sb.append("Perspective transform matrix\n");
1368:                sb.append(this .m00);
1369:                sb.append("\t");
1370:                sb.append(this .m01);
1371:                sb.append("\t");
1372:                sb.append(this .m02);
1373:                sb.append("\n");
1374:                sb.append(this .m10);
1375:                sb.append("\t");
1376:                sb.append(this .m11);
1377:                sb.append("\t");
1378:                sb.append(this .m12);
1379:                sb.append("\n");
1380:                sb.append(this .m20);
1381:                sb.append("\t");
1382:                sb.append(this .m21);
1383:                sb.append("\t");
1384:                sb.append(this .m22);
1385:                sb.append("\n");
1386:                return new String(sb);
1387:            }
1388:
1389:            /**
1390:             * Returns the boolean true value if this PerspectiveTransform is an
1391:             * identity transform. Returns false otherwise.
1392:             */
1393:            public boolean isIdentity() {
1394:                return m01 == 0.0 && m02 == 0.0 && m10 == 0.0 && m12 == 0.0
1395:                        && m20 == 0.0 && m21 == 0.0 && m22 != 0.0
1396:                        && m00 / m22 == 1.0 && m11 / m22 == 1.0;
1397:            }
1398:
1399:            /**
1400:             * Returns a copy of this PerspectiveTransform object.
1401:             */
1402:            public Object clone() {
1403:                try {
1404:                    return super .clone();
1405:                } catch (CloneNotSupportedException e) {
1406:                    // this shouldn't happen, since we are Cloneable
1407:                    throw new InternalError();
1408:                }
1409:            }
1410:
1411:            /**
1412:             * Tests if this PerspectiveTransform equals a supplied one.
1413:             *
1414:             * @param obj The PerspectiveTransform to be compared to this one.
1415:             */
1416:            public boolean equals(Object obj) {
1417:                if (!(obj instanceof  PerspectiveTransform)) {
1418:                    return false;
1419:                }
1420:
1421:                PerspectiveTransform a = (PerspectiveTransform) obj;
1422:
1423:                return ((m00 == a.m00) && (m10 == a.m10) && (m20 == a.m20)
1424:                        && (m01 == a.m01) && (m11 == a.m11) && (m21 == a.m21)
1425:                        && (m02 == a.m02) && (m12 == a.m12) && (m22 == a.m22));
1426:            }
1427:        }
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.