Source Code Cross Referenced for Fibonacci.java in  » Development » jgap » examples » gp » Java Source Code / Java DocumentationJava Source Code and Java Documentation

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » Development » jgap » examples.gp 
Source Cross Referenced  Class Diagram Java Document (Java Doc) 


001:        /*
002:         * This file is part of JGAP.
003:         *
004:         * JGAP offers a dual license model containing the LGPL as well as the MPL.
005:         *
006:         * For licensing information please see the file license.txt included with JGAP
007:         * or have a look at the top of class org.jgap.Chromosome which representatively
008:         * includes the JGAP license policy applicable for any file delivered with JGAP.
009:         */
010:        package examples.gp;
011:
012:        import org.jgap.*;
013:        import org.jgap.event.*;
014:        import org.jgap.gp.*;
015:        import org.jgap.gp.impl.*;
016:        import org.jgap.gp.function.*;
017:        import org.jgap.gp.terminal.*;
018:        import org.jgap.util.*;
019:
020:        /**
021:         * Example demonstrating Genetic Programming (GP) capabilities of JGAP.<p>
022:         * Here, the Fibonacci sequence is calculated (only integers are used).<p>
023:         * Please note: We try to find a program that computes Fibonacci iteratively.<p>
024:         * This example utilizes a INodeValidator (see FibonacciNodeValidator).<p>
025:         * Each new best solution found will be displayed as a graphical tree
026:         * representing the GP. The tree is written to a PNG-imagefile onto harddisk.
027:         *
028:         * @author Klaus Meffert
029:         * @since 3.0
030:         */
031:        public class Fibonacci extends GPProblem {
032:            /** String containing the CVS revision. Read out via reflection!*/
033:            private final static String CVS_REVISION = "$Revision: 1.28 $";
034:
035:            static Variable vx;
036:
037:            static Variable va;
038:
039:            private final static int NUMFIB = 10;
040:
041:            static Integer[] x = new Integer[NUMFIB];
042:
043:            static int[] y = new int[NUMFIB];
044:
045:            public Fibonacci(GPConfiguration a_conf)
046:                    throws InvalidConfigurationException {
047:                super (a_conf);
048:            }
049:
050:            /**
051:             * Sets up the functions to use and other parameters. Then creates the
052:             * initial genotype.
053:             *
054:             * @return the genotype created
055:             * @throws InvalidConfigurationException
056:             *
057:             * @author Klaus Meffert
058:             * @since 3.0
059:             */
060:            public GPGenotype create() throws InvalidConfigurationException {
061:                Class[] types = { CommandGene.VoidClass, CommandGene.VoidClass,
062:                        CommandGene.IntegerClass };
063:                Class[][] argTypes = { {}, {}, {} };
064:                int[] minDepths = new int[] { 2, 3, 1 };
065:                int[] maxDepths = new int[] { 2, 9, 1 };
066:                GPConfiguration conf = getGPConfiguration();
067:                /**@todo allow to optionally preset a static program in each chromosome*/
068:                CommandGene[][] nodeSets = {
069:                        {
070:                                new SubProgram(conf, new Class[] {
071:                                        CommandGene.VoidClass,
072:                                        CommandGene.VoidClass }),
073:                                //        new Constant(conf, CommandGene.IntegerClass, new Integer(1)),
074:                                new StoreTerminal(conf, "mem0",
075:                                        CommandGene.IntegerClass),
076:                                new StoreTerminal(conf, "mem1",
077:                                        CommandGene.IntegerClass),
078:                                new Increment(conf, CommandGene.IntegerClass),
079:                                new NOP(conf),
080:                                new Terminal(conf, CommandGene.IntegerClass,
081:                                        0.0, 10.0), },
082:                        {
083:                                vx = Variable.create(conf, "X",
084:                                        CommandGene.IntegerClass),
085:                                new AddAndStore(conf, CommandGene.IntegerClass,
086:                                        "mem2"),
087:                                new ForLoop(conf, CommandGene.IntegerClass, 1,
088:                                        NUMFIB),
089:                                new Increment(conf, CommandGene.IntegerClass,
090:                                        -1),
091:                                new TransferMemory(conf, "mem2", "mem1"),
092:                                new TransferMemory(conf, "mem1", "mem0"),
093:                                new ReadTerminal(conf,
094:                                        CommandGene.IntegerClass, "mem0"),
095:                                new ReadTerminal(conf,
096:                                        CommandGene.IntegerClass, "mem1"),
097:                                new SubProgram(conf, new Class[] {
098:                                        CommandGene.VoidClass,
099:                                        CommandGene.VoidClass,
100:                                        CommandGene.VoidClass }), }, {
101:                        // Commands will be added programmatically, see below.
102:                        // ---------------------------------------------------
103:                        } };
104:                // Add commands working with internal memory.
105:                // ------------------------------------------
106:                nodeSets[2] = CommandFactory.createReadOnlyCommands(
107:                        nodeSets[2], conf, CommandGene.IntegerClass, "mem", 1,
108:                        2, !true);
109:                // Randomly initialize function data (X-Y table) for Fib(x).
110:                // ---------------------------------------------------------
111:                for (int i = 0; i < NUMFIB; i++) {
112:                    int index = i;
113:                    x[i] = new Integer(index);
114:                    y[i] = fib_iter(index);
115:                    System.out.println(i + ") " + x[i] + "   " + y[i]);
116:                }
117:                // Create genotype with initial population.
118:                // ----------------------------------------
119:                return GPGenotype.randomInitialGenotype(conf, types, argTypes,
120:                        nodeSets, minDepths, maxDepths, 10, new boolean[] {
121:                                !true, !true, false }, true);
122:            }
123:
124:            //(Sort of) This is what we would like to (and can) find via GP:
125:            private static int fib_iter(int a_index) {
126:                // 1
127:                if (a_index == 0 || a_index == 1) {
128:                    return 1;
129:                }
130:                // 2
131:                int a = 1; //Store("mem0", Constant(1))
132:                int b = 1; //Store("mem1", Constant(1))
133:                int x = 0; //Store("mem2", Constant(0))
134:                // 3
135:                for (int i = 2; i <= a_index; i++) { //FORX (Subprogram(A;B;C))
136:                    x = a + b; // A: AddAndStore(Read("mem0"),Read("mem1"),"mem2")
137:                    a = b; //B: TransferMemory("mem1","mem0")
138:                    b = x; //C: TransferMemory("mem2","mem1")
139:                }
140:                return x; //Read("mem2")
141:            }
142:
143:            //(Sort of) This is what we would like to find via GP:
144:            private int fib_array(int a_index) {
145:                // 1
146:                if (a_index == 0 || a_index == 1) {
147:                    return 1;
148:                }
149:                // 2
150:                int[] numbers = new int[a_index + 1];
151:                numbers[0] = numbers[1] = 1;
152:                // 3
153:                for (int i = 2; i <= a_index; i++) {
154:                    numbers[i] = numbers[i - 1] + numbers[i - 2];
155:                }
156:                return numbers[a_index];
157:            }
158:
159:            //(Sort of) This is what we would like to (but cannot) find via GP:
160:            private static int fib(int a_index) {
161:                if (a_index == 0 || a_index == 1) {
162:                    return 1;
163:                }
164:                return fib(a_index - 1) + fib(a_index - 2);
165:            }
166:
167:            /**
168:             * Starts the example.
169:             *
170:             * @param args ignored
171:             * @throws Exception
172:             *
173:             * @author Klaus Meffert
174:             * @since 3.0
175:             */
176:            public static void main(String[] args) {
177:                try {
178:                    System.out.println("Program to discover: Fibonacci(x)");
179:                    GPConfiguration config = new GPConfiguration();
180:                    config.setGPFitnessEvaluator(new DeltaGPFitnessEvaluator());
181:                    config.setSelectionMethod(new TournamentSelector(4));
182:                    int popSize;
183:                    if (args.length == 1) {
184:                        popSize = Integer.parseInt(args[0]);
185:                    } else {
186:                        popSize = 600;
187:                    }
188:                    System.out.println("Using population size of " + popSize);
189:                    config.setMaxInitDepth(6);
190:                    config.setPopulationSize(popSize);
191:                    config
192:                            .setFitnessFunction(new Fibonacci.FormulaFitnessFunction());
193:                    config.setStrictProgramCreation(false);
194:                    config.setProgramCreationMaxTries(3);
195:                    config.setMaxCrossoverDepth(5);
196:                    // Set a node validator to demonstrate speedup when something is known
197:                    // about the solution (see FibonacciNodeValidator).
198:                    // -------------------------------------------------------------------
199:                    config.setNodeValidator(new FibonacciNodeValidator());
200:                    // Activate caching og GP programs --> Fitness values will be cached
201:                    // for programs equal to previously evolved ones.
202:                    // -----------------------------------------------------------------
203:                    config.setUseProgramCache(true);
204:                    final GPProblem problem = new Fibonacci(config);
205:                    GPGenotype gp = problem.create();
206:                    gp.setVerboseOutput(true);
207:                    final Thread t = new Thread(gp);
208:                    // Simple implementation of running evolution in a thread.
209:                    // -------------------------------------------------------
210:                    config.getEventManager().addEventListener(
211:                            GeneticEvent.GPGENOTYPE_EVOLVED_EVENT,
212:                            new GeneticEventListener() {
213:                                public void geneticEventFired(
214:                                        GeneticEvent a_firedEvent) {
215:                                    GPGenotype genotype = (GPGenotype) a_firedEvent
216:                                            .getSource();
217:                                    int evno = genotype.getGPConfiguration()
218:                                            .getGenerationNr();
219:                                    double freeMem = SystemKit
220:                                            .getFreeMemoryMB();
221:                                    if (evno % 50 == 0) {
222:                                        double allBestFitness = genotype
223:                                                .getAllTimeBest()
224:                                                .getFitnessValue();
225:                                        System.out
226:                                                .println("Evolving generation "
227:                                                        + evno
228:                                                        + ", all-time-best fitness: "
229:                                                        + allBestFitness
230:                                                        + ", memory free: "
231:                                                        + freeMem + " MB");
232:                                    }
233:                                    if (evno > 3000) {
234:                                        t.stop();
235:                                    } else {
236:                                        try {
237:                                            // Collect garbage if memory low.
238:                                            // ------------------------------
239:                                            if (freeMem < 50) {
240:                                                System.gc();
241:                                                t.sleep(500);
242:                                            } else {
243:                                                // Avoid 100% CPU load.
244:                                                // --------------------
245:                                                t.sleep(30);
246:                                            }
247:                                        } catch (InterruptedException iex) {
248:                                            iex.printStackTrace();
249:                                            System.exit(1);
250:                                        }
251:                                    }
252:                                }
253:                            });
254:                    config.getEventManager().addEventListener(
255:                            GeneticEvent.GPGENOTYPE_NEW_BEST_SOLUTION,
256:                            new GeneticEventListener() {
257:                                /**
258:                                 * New best solution found.
259:                                 *
260:                                 * @param a_firedEvent GeneticEvent
261:                                 */
262:                                public void geneticEventFired(
263:                                        GeneticEvent a_firedEvent) {
264:                                    GPGenotype genotype = (GPGenotype) a_firedEvent
265:                                            .getSource();
266:                                    int evno = genotype.getGPConfiguration()
267:                                            .getGenerationNr();
268:                                    String indexString = "" + evno;
269:                                    while (indexString.length() < 5) {
270:                                        indexString = "0" + indexString;
271:                                    }
272:                                    String filename = "fibonacci_best"
273:                                            + indexString + ".png";
274:                                    IGPProgram best = genotype.getAllTimeBest();
275:                                    try {
276:                                        problem.showTree(best, filename);
277:                                    } catch (InvalidConfigurationException iex) {
278:                                        iex.printStackTrace();
279:                                    }
280:                                    double bestFitness = genotype
281:                                            .getFittestProgram()
282:                                            .getFitnessValue();
283:                                    if (bestFitness < 0.001) {
284:                                        genotype.outputSolution(best);
285:                                        t.stop();
286:                                        System.exit(0);
287:                                    }
288:                                }
289:                            });
290:                    t.start();
291:                } catch (Exception ex) {
292:                    ex.printStackTrace();
293:                    System.exit(1);
294:                }
295:            }
296:
297:            public static class FormulaFitnessFunction extends
298:                    GPFitnessFunction {
299:                protected double evaluate(final IGPProgram a_subject) {
300:                    return computeRawFitness(a_subject);
301:                }
302:
303:                public double computeRawFitness(final IGPProgram a_program) {
304:                    double error = 0.0f;
305:                    Object[] noargs = new Object[0];
306:                    // Initialize local stores.
307:                    // ------------------------
308:                    a_program.getGPConfiguration().clearStack();
309:                    a_program.getGPConfiguration().clearMemory();
310:                    // Compute fitness for each program.
311:                    // ---------------------------------
312:                    /**@todo check if program valid, i.e. worth evaluating*/
313:                    for (int i = 2; i < NUMFIB; i++) {
314:                        for (int j = 0; j < a_program.size(); j++) {
315:                            vx.set(x[i]);
316:                            try {
317:                                try {
318:                                    // Init. params (a_program.getTypes()) distinguish program flow.
319:                                    // This could be coded dynamically but that would slow down
320:                                    // things a lot.
321:                                    // -------------------------------------------------------------
322:                                    if (j == a_program.size() - 1) {
323:                                        // Only evaluate after whole GP program was run.
324:                                        // ---------------------------------------------
325:                                        double result = a_program.execute_int(
326:                                                j, noargs);
327:                                        error += Math.abs(result - y[i]);
328:                                    } else {
329:                                        // Execute memory manipulating subprograms.
330:                                        // ----------------------------------------
331:                                        a_program.execute_void(j, noargs);
332:                                    }
333:                                } catch (IllegalStateException iex) {
334:                                    error = GPFitnessFunction.MAX_FITNESS_VALUE;
335:                                    break;
336:                                }
337:                            } catch (ArithmeticException ex) {
338:                                System.out.println("x = " + x[i].intValue());
339:                                System.out.println(a_program.getChromosome(j));
340:                                throw ex;
341:                            }
342:                        }
343:                    }
344:                    if (a_program.getGPConfiguration().stackSize() > 0) {
345:                        error = GPFitnessFunction.MAX_FITNESS_VALUE;
346:                    }
347:                    if (error < 0.000001) {
348:                        error = 0.0d;
349:                    } else if (error < GPFitnessFunction.MAX_FITNESS_VALUE) {
350:                        /**@todo add penalty for longer solutions*/
351:                    }
352:                    return error;
353:                }
354:            }
355:        }
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.