Source Code Cross Referenced for LambertAzimuthalEqualArea.java in  » GIS » GeoTools-2.4.1 » org » geotools » referencing » operation » projection » Java Source Code / Java DocumentationJava Source Code and Java Documentation

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » GIS » GeoTools 2.4.1 » org.geotools.referencing.operation.projection 
Source Cross Referenced  Class Diagram Java Document (Java Doc) 


001:        /*
002:         *    GeoTools - OpenSource mapping toolkit
003:         *    http://geotools.org
004:         *
005:         *   (C) 2006, Geotools Project Managment Committee (PMC)
006:         *   (C) 2000, Frank Warmerdam
007:         *   (C) 1995, Gerald Evenden
008:         *
009:         *    This library is free software; you can redistribute it and/or
010:         *    modify it under the terms of the GNU Lesser General Public
011:         *    License as published by the Free Software Foundation;
012:         *    version 2.1 of the License.
013:         *
014:         *    This library is distributed in the hope that it will be useful,
015:         *    but WITHOUT ANY WARRANTY; without even the implied warranty of
016:         *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
017:         *    Lesser General Public License for more details.
018:         *
019:         *    This package contains formulas from the PROJ package of USGS.
020:         *    USGS's work is fully acknowledged here. This derived work has
021:         *    been relicensed under LGPL with Frank Warmerdam's permission.
022:         */
023:        package org.geotools.referencing.operation.projection;
024:
025:        // J2SE dependencies and extensions
026:        import java.awt.geom.Point2D;
027:        import java.util.Collection;
028:        import javax.units.NonSI;
029:
030:        // OpenGIS dependencies
031:        import org.opengis.parameter.ParameterDescriptor;
032:        import org.opengis.parameter.ParameterDescriptorGroup;
033:        import org.opengis.parameter.ParameterNotFoundException;
034:        import org.opengis.parameter.ParameterValueGroup;
035:        import org.opengis.referencing.operation.ConicProjection;
036:        import org.opengis.referencing.operation.MathTransform;
037:
038:        // Geotools dependencies
039:        import org.geotools.measure.Latitude;
040:        import org.geotools.metadata.iso.citation.Citations;
041:        import org.geotools.referencing.NamedIdentifier;
042:        import org.geotools.resources.i18n.VocabularyKeys;
043:        import org.geotools.resources.i18n.Vocabulary;
044:        import org.geotools.resources.i18n.ErrorKeys;
045:        import org.geotools.resources.i18n.Errors;
046:        import org.geotools.resources.XMath;
047:
048:        /**
049:         * Lambert Azimuthal Equal Area (EPSG code 9820).
050:         *
051:         * <strong>References:</strong><ul>
052:         *   <li> A. Annoni, C. Luzet, E.Gubler and J. Ihde - Map Projections for Europe</li>
053:         *   <li> John P. Snyder (Map Projections - A Working Manual,
054:         *        U.S. Geological Survey Professional Paper 1395)</li>
055:         * </ul>
056:         *
057:         * @see <A HREF="http://mathworld.wolfram.com/LambertAzimuthalEqual-AreaProjection.html">Lambert Azimuthal Equal-Area Projection on MathWorld</A>
058:         * @see <A HREF="http://www.remotesensing.org/geotiff/proj_list/lambert_azimuthal_equal_area.html">"Lambert_Azimuthal_Equal_Area" on RemoteSensing.org</A>
059:         *
060:         * @since 2.4
061:         * @version $Id: LambertAzimuthalEqualArea.java 24333 2007-02-10 00:16:22Z desruisseaux $
062:         * @source $URL: http://svn.geotools.org/geotools/tags/2.4.1/modules/library/referencing/src/main/java/org/geotools/referencing/operation/projection/LambertAzimuthalEqualArea.java $
063:         * @author Gerald Evenden
064:         * @author Beate Stollberg
065:         * @author Martin Desruisseaux
066:         */
067:        public class LambertAzimuthalEqualArea extends MapProjection {
068:            /** Maximum difference allowed when comparing real numbers. */
069:            private static final double EPSILON = 1E-7;
070:
071:            /** Epsilon for the comparaison of small quantities. */
072:            private static final double FINE_EPSILON = 1E-10;
073:
074:            /** Epsilon for the comparaison of latitudes. */
075:            private static final double EPSILON_LATITUDE = 1E-10;
076:
077:            /** Constants for authalic latitude. */
078:            private static final double P00 = 0.33333333333333333333,
079:                    P01 = 0.17222222222222222222, P02 = 0.10257936507936507936,
080:                    P10 = 0.06388888888888888888, P11 = 0.06640211640211640211,
081:                    P20 = 0.01641501294219154443;
082:
083:            /** The projection mode. */
084:            static final int OBLIQUE = 0, EQUATORIAL = 1, NORTH_POLE = 2,
085:                    SOUTH_POLE = 3;
086:
087:            /** The projection mode for this particular instance. */
088:            final int mode;
089:
090:            /** Constant parameters. */
091:            final double sinb1, cosb1, xmf, ymf, mmf, qp, dd, rq;
092:
093:            /** Coefficients for authalic latitude. */
094:            private final double APA0, APA1, APA2;
095:
096:            /**
097:             * Constructs a new map projection from the supplied parameters.
098:             *
099:             * @param  parameters The parameter values in standard units.
100:             * @throws ParameterNotFoundException if a mandatory parameter is missing.
101:             */
102:            protected LambertAzimuthalEqualArea(
103:                    final ParameterValueGroup parameters)
104:                    throws ParameterNotFoundException {
105:                // Fetch parameters
106:                super (parameters);
107:                final Collection expected = getParameterDescriptors()
108:                        .descriptors();
109:                latitudeOfOrigin = doubleValue(expected,
110:                        Provider.LATITUDE_OF_CENTRE, parameters);
111:                centralMeridian = doubleValue(expected,
112:                        Provider.LONGITUDE_OF_CENTRE, parameters);
113:                ensureLatitudeInRange(Provider.LATITUDE_OF_CENTRE,
114:                        latitudeOfOrigin, true);
115:                ensureLongitudeInRange(Provider.LONGITUDE_OF_CENTRE,
116:                        centralMeridian, true);
117:                /*
118:                 * Detects the mode (oblique, etc.).
119:                 */
120:                final double t = Math.abs(latitudeOfOrigin);
121:                if (Math.abs(t - Math.PI / 2) < EPSILON_LATITUDE) {
122:                    mode = latitudeOfOrigin < 0.0 ? SOUTH_POLE : NORTH_POLE;
123:                } else if (Math.abs(t) < EPSILON_LATITUDE) {
124:                    mode = EQUATORIAL;
125:                } else {
126:                    mode = OBLIQUE;
127:                }
128:                /*
129:                 * Computes the constants for authalic latitude.
130:                 */
131:                final double es2 = excentricitySquared * excentricitySquared;
132:                final double es3 = excentricitySquared * es2;
133:                APA0 = P02 * es3 + P01 * es2 + P00 * excentricitySquared;
134:                APA1 = P11 * es3 + P10 * es2;
135:                APA2 = P20 * es3;
136:
137:                final double sinphi;
138:                qp = qsfn(1);
139:                rq = Math.sqrt(0.5 * qp);
140:                mmf = 0.5 / (1 - excentricitySquared);
141:                sinphi = Math.sin(latitudeOfOrigin);
142:                if (isSpherical) {
143:                    sinb1 = Math.sin(latitudeOfOrigin);
144:                    cosb1 = Math.cos(latitudeOfOrigin);
145:                } else {
146:                    sinb1 = qsfn(sinphi) / qp;
147:                    cosb1 = Math.sqrt(1.0 - sinb1 * sinb1);
148:                }
149:                switch (mode) {
150:                case NORTH_POLE: // Fall through
151:                case SOUTH_POLE: {
152:                    dd = 1.0;
153:                    xmf = ymf = rq;
154:                    break;
155:                }
156:                case EQUATORIAL: {
157:                    dd = 1.0 / rq;
158:                    xmf = 1.0;
159:                    ymf = 0.5 * qp;
160:                    break;
161:                }
162:                case OBLIQUE: {
163:                    dd = Math.cos(latitudeOfOrigin)
164:                            / (Math.sqrt(1.0 - excentricitySquared * sinphi
165:                                    * sinphi)
166:                                    * rq * cosb1);
167:                    xmf = rq * dd;
168:                    ymf = rq / dd;
169:                    break;
170:                }
171:                default: {
172:                    throw new AssertionError(mode);
173:                }
174:                }
175:            }
176:
177:            /**
178:             * {@inheritDoc}
179:             */
180:            public ParameterDescriptorGroup getParameterDescriptors() {
181:                return Provider.PARAMETERS;
182:            }
183:
184:            /**
185:             * {@inheritDoc}
186:             */
187:            public ParameterValueGroup getParameterValues() {
188:                final ParameterValueGroup values = super .getParameterValues();
189:                final Collection expected = getParameterDescriptors()
190:                        .descriptors();
191:                set(expected, Provider.LATITUDE_OF_CENTRE, values,
192:                        latitudeOfOrigin);
193:                set(expected, Provider.LONGITUDE_OF_CENTRE, values,
194:                        centralMeridian);
195:                return values;
196:            }
197:
198:            /**
199:             * Transforms the specified (<var>&lambda;</var>,<var>&phi;</var>) coordinates
200:             * (units in radians) and stores the result in {@code ptDst} (linear distance
201:             * on a unit sphere).
202:             */
203:            protected Point2D transformNormalized(final double lambda,
204:                    final double phi, Point2D ptDst) throws ProjectionException {
205:                final double coslam = Math.cos(lambda);
206:                final double sinlam = Math.sin(lambda);
207:                final double sinphi = Math.sin(phi);
208:                double q = qsfn(sinphi);
209:                final double sinb, cosb, b, c, x, y;
210:                switch (mode) {
211:                case OBLIQUE: {
212:                    sinb = q / qp;
213:                    cosb = Math.sqrt(1.0 - sinb * sinb);
214:                    c = 1.0 + sinb1 * sinb + cosb1 * cosb * coslam;
215:                    b = Math.sqrt(2.0 / c);
216:                    y = ymf * b * (cosb1 * sinb - sinb1 * cosb * coslam);
217:                    x = xmf * b * cosb * sinlam;
218:                    break;
219:                }
220:                case EQUATORIAL: {
221:                    sinb = q / qp;
222:                    cosb = Math.sqrt(1.0 - sinb * sinb);
223:                    c = 1.0 + cosb * coslam;
224:                    b = Math.sqrt(2.0 / c);
225:                    y = ymf * b * sinb;
226:                    x = xmf * b * cosb * sinlam;
227:                    break;
228:                }
229:                case NORTH_POLE: {
230:                    c = (Math.PI / 2) + phi;
231:                    q = qp - q;
232:                    if (q >= 0.0) {
233:                        b = Math.sqrt(q);
234:                        x = b * sinlam;
235:                        y = coslam * -b;
236:                    } else {
237:                        x = y = 0.;
238:                    }
239:                    break;
240:                }
241:                case SOUTH_POLE: {
242:                    c = phi - (Math.PI / 2);
243:                    q = qp + q;
244:                    if (q >= 0.0) {
245:                        b = Math.sqrt(q);
246:                        x = b * sinlam;
247:                        y = coslam * +b;
248:                    } else {
249:                        x = y = 0.;
250:                    }
251:                    break;
252:                }
253:                default: {
254:                    throw new AssertionError(mode);
255:                }
256:                }
257:                if (Math.abs(c) < EPSILON_LATITUDE) {
258:                    throw toleranceError();
259:                }
260:                if (ptDst != null) {
261:                    ptDst.setLocation(x, y);
262:                    return ptDst;
263:                }
264:                return new Point2D.Double(x, y);
265:            }
266:
267:            /**
268:             * Transforms the specified (<var>x</var>,<var>y</var>) coordinate
269:             * and stores the result in {@code ptDst}.
270:             */
271:            protected Point2D inverseTransformNormalized(double x, double y,
272:                    Point2D ptDst) throws ProjectionException {
273:                final double lambda, phi;
274:                switch (mode) {
275:                case EQUATORIAL: // Fall through
276:                case OBLIQUE: {
277:                    x /= dd;
278:                    y *= dd;
279:                    final double rho = XMath.hypot(x, y);
280:                    if (rho < FINE_EPSILON) {
281:                        lambda = 0.0;
282:                        phi = latitudeOfOrigin;
283:                    } else {
284:                        double sCe, cCe, q, ab;
285:                        sCe = 2.0 * Math.asin(0.5 * rho / rq);
286:                        cCe = Math.cos(sCe);
287:                        sCe = Math.sin(sCe);
288:                        x *= sCe;
289:                        if (mode == OBLIQUE) {
290:                            ab = cCe * sinb1 + y * sCe * cosb1 / rho;
291:                            q = qp * ab;
292:                            y = rho * cosb1 * cCe - y * sinb1 * sCe;
293:                        } else {
294:                            ab = y * sCe / rho;
295:                            q = qp * ab;
296:                            y = rho * cCe;
297:                        }
298:                        lambda = Math.atan2(x, y);
299:                        phi = authlat(Math.asin(ab));
300:                    }
301:                    break;
302:                }
303:                case NORTH_POLE: {
304:                    y = -y;
305:                    // Fall through
306:                }
307:                case SOUTH_POLE: {
308:                    final double q = x * x + y * y;
309:                    if (q == 0) {
310:                        lambda = 0.;
311:                        phi = latitudeOfOrigin;
312:                    } else {
313:                        double ab = 1.0 - q / qp;
314:                        if (mode == SOUTH_POLE) {
315:                            ab = -ab;
316:                        }
317:                        lambda = Math.atan2(x, y);
318:                        phi = authlat(Math.asin(ab));
319:                    }
320:                    break;
321:                }
322:                default: {
323:                    throw new AssertionError(mode);
324:                }
325:                }
326:                if (ptDst != null) {
327:                    ptDst.setLocation(lambda, phi);
328:                    return ptDst;
329:                }
330:                return new Point2D.Double(lambda, phi);
331:            }
332:
333:            /**
334:             * Provides the transform equations for the spherical case.
335:             *
336:             * @version $Id: LambertAzimuthalEqualArea.java 24333 2007-02-10 00:16:22Z desruisseaux $
337:             * @author Martin Desruisseaux
338:             */
339:            private static final class Spherical extends
340:                    LambertAzimuthalEqualArea {
341:                /**
342:                 * Constructs a new map projection from the suplied parameters.
343:                 *
344:                 * @param  parameters The parameter values in standard units.
345:                 * @throws ParameterNotFoundException if a mandatory parameter is missing.
346:                 */
347:                protected Spherical(final ParameterValueGroup parameters)
348:                        throws ParameterNotFoundException {
349:                    super (parameters);
350:                    ensureSpherical();
351:                }
352:
353:                /**
354:                 * Transforms the specified (<var>&lambda;</var>,<var>&phi;</var>) coordinates
355:                 * (units in radians) and stores the result in {@code ptDst} (linear distance
356:                 * on a unit sphere).
357:                 */
358:                protected Point2D transformNormalized(final double lambda,
359:                        final double phi, Point2D ptDst)
360:                        throws ProjectionException {
361:                    // Compute using ellipsoidal formulas, for comparaison later.
362:                    assert (ptDst = super .transformNormalized(lambda, phi,
363:                            ptDst)) != null;
364:
365:                    final double sinphi = Math.sin(phi);
366:                    final double cosphi = Math.cos(phi);
367:                    final double coslam = Math.cos(lambda);
368:                    double x, y;
369:                    switch (mode) {
370:                    case EQUATORIAL: {
371:                        y = 1.0 + cosphi * coslam;
372:                        if (y <= FINE_EPSILON) {
373:                            throw toleranceError();
374:                        }
375:                        y = Math.sqrt(2.0 / y);
376:                        x = y * cosphi * Math.sin(lambda);
377:                        y *= sinphi;
378:                        break;
379:                    }
380:                    case OBLIQUE: {
381:                        y = 1.0 + sinb1 * sinphi + cosb1 * cosphi * coslam;
382:                        if (y <= FINE_EPSILON) {
383:                            throw toleranceError();
384:                        }
385:                        y = Math.sqrt(2.0 / y);
386:                        x = y * cosphi * Math.sin(lambda);
387:                        y *= cosb1 * sinphi - sinb1 * cosphi * coslam;
388:                        break;
389:                    }
390:                    case NORTH_POLE: {
391:                        if (Math.abs(phi + latitudeOfOrigin) < EPSILON_LATITUDE) {
392:                            throw toleranceError();
393:                        }
394:                        y = (Math.PI / 4) - phi * 0.5;
395:                        y = 2.0 * Math.sin(y);
396:                        x = y * Math.sin(lambda);
397:                        y *= -coslam;
398:                        break;
399:                    }
400:                    case SOUTH_POLE: {
401:                        if (Math.abs(phi + latitudeOfOrigin) < EPSILON_LATITUDE) {
402:                            throw toleranceError();
403:                        }
404:                        y = (Math.PI / 4) - phi * 0.5;
405:                        y = 2.0 * Math.cos(y);
406:                        x = y * Math.sin(lambda);
407:                        y *= +coslam;
408:                        break;
409:                    }
410:                    default: {
411:                        throw new AssertionError(mode);
412:                    }
413:                    }
414:                    assert checkTransform(x, y, ptDst);
415:                    if (ptDst != null) {
416:                        ptDst.setLocation(x, y);
417:                        return ptDst;
418:                    }
419:                    return new Point2D.Double(x, y);
420:                }
421:
422:                /**
423:                 * Transforms the specified (<var>x</var>,<var>y</var>) coordinate
424:                 * and stores the result in {@code ptDst} using equations for a sphere.
425:                 */
426:                protected Point2D inverseTransformNormalized(double x,
427:                        double y, Point2D ptDst) throws ProjectionException {
428:                    // Compute using ellipsoidal formulas, for comparaison later.
429:                    assert (ptDst = super .inverseTransformNormalized(x, y,
430:                            ptDst)) != null;
431:
432:                    double lambda, phi;
433:                    final double rh = XMath.hypot(x, y);
434:                    phi = rh * 0.5;
435:                    if (phi > 1.0) {
436:                        throw toleranceError();
437:                    }
438:                    phi = 2.0 * Math.asin(phi);
439:                    switch (mode) {
440:                    case EQUATORIAL: {
441:                        final double sinz = Math.sin(phi);
442:                        final double cosz = Math.cos(phi);
443:                        phi = Math.abs(rh) <= FINE_EPSILON ? 0.0 : Math.asin(y
444:                                * sinz / rh);
445:                        x *= sinz;
446:                        y = cosz * rh;
447:                        lambda = (y == 0) ? 0.0 : Math.atan2(x, y);
448:                        break;
449:                    }
450:                    case OBLIQUE: {
451:                        final double sinz = Math.sin(phi);
452:                        final double cosz = Math.cos(phi);
453:                        phi = Math.abs(rh) <= FINE_EPSILON ? latitudeOfOrigin
454:                                : Math.asin(cosz * sinb1 + y * sinz * cosb1
455:                                        / rh);
456:                        x *= sinz * cosb1;
457:                        y = (cosz - Math.sin(phi) * sinb1) * rh;
458:                        lambda = (y == 0) ? 0.0 : Math.atan2(x, y);
459:                        break;
460:                    }
461:                    case NORTH_POLE: {
462:                        phi = (Math.PI / 2) - phi;
463:                        lambda = Math.atan2(x, -y);
464:                        break;
465:                    }
466:                    case SOUTH_POLE: {
467:                        phi -= (Math.PI / 2);
468:                        lambda = Math.atan2(x, y);
469:                        break;
470:                    }
471:                    default: {
472:                        throw new AssertionError(mode);
473:                    }
474:                    }
475:                    assert checkInverseTransform(lambda, phi, ptDst);
476:                    if (ptDst != null) {
477:                        ptDst.setLocation(lambda, phi);
478:                        return ptDst;
479:                    }
480:                    return new Point2D.Double(lambda, phi);
481:                }
482:            }
483:
484:            /**
485:             * Calculates <var>q</var>, Snyder equation (3-12)
486:             *
487:             * @param sinphi sin of the latitude <var>q</var> is calculated for.
488:             * @return <var>q</var> from Snyder equation (3-12).
489:             */
490:            private double qsfn(final double sinphi) {
491:                if (excentricity >= EPSILON) {
492:                    final double con = excentricity * sinphi;
493:                    return ((1.0 - excentricitySquared) * (sinphi
494:                            / (1.0 - con * con) - (0.5 / excentricity)
495:                            * Math.log((1.0 - con) / (1.0 + con))));
496:                } else {
497:                    return sinphi + sinphi;
498:                }
499:            }
500:
501:            /**
502:             * Determines latitude from authalic latitude.
503:             */
504:            private double authlat(final double beta) {
505:                final double t = beta + beta;
506:                return beta + APA0 * Math.sin(t) + APA1 * Math.sin(t + t)
507:                        + APA2 * Math.sin(t + t + t);
508:            }
509:
510:            /**
511:             * Returns an exception for a tolerance error (error code -20 in Proj4).
512:             */
513:            private static ProjectionException toleranceError() {
514:                return new ProjectionException(Errors
515:                        .format(ErrorKeys.TOLERANCE_ERROR));
516:            }
517:
518:            //////////////////////////////////////////////////////////////////////////////////////////
519:            //////////////////////////////////////////////////////////////////////////////////////////
520:            ////////                                                                          ////////
521:            ////////                                 PROVIDERS                                ////////
522:            ////////                                                                          ////////
523:            //////////////////////////////////////////////////////////////////////////////////////////
524:            //////////////////////////////////////////////////////////////////////////////////////////
525:
526:            /**
527:             * The {@linkplain org.geotools.referencing.operation.MathTransformProvider math transform
528:             * provider} for an {@linkplain LambertAzimuthalEqualArea Lambert Equal Area} projection
529:             * (EPSG code 9820).
530:             *
531:             * @since 2.4
532:             * @version $Id: LambertAzimuthalEqualArea.java 24333 2007-02-10 00:16:22Z desruisseaux $
533:             * @author Beate Stollberg
534:             *
535:             * @see org.geotools.referencing.operation.DefaultMathTransformFactory
536:             */
537:            public static class Provider extends AbstractProvider {
538:                /**
539:                 * The operation parameter descriptor for the {@link #latitudeOfOrigin}
540:                 * parameter value. Valid values range is from -90 to 90°. Default value is 0.
541:                 */
542:                public static final ParameterDescriptor LATITUDE_OF_CENTRE = createDescriptor(
543:                        new NamedIdentifier[] {
544:                                new NamedIdentifier(Citations.OGC,
545:                                        "latitude_of_center"),
546:                                new NamedIdentifier(Citations.EPSG,
547:                                        "Latitude of natural origin"),
548:                                new NamedIdentifier(Citations.ESRI,
549:                                        "latitude_of_origin"),
550:                                new NamedIdentifier(Citations.GEOTIFF,
551:                                        "ProjCenterLat") }, 0, -90, 90,
552:                        NonSI.DEGREE_ANGLE);
553:
554:                /**
555:                 * The operation parameter descriptor for the {@link #centralMeridian}
556:                 * parameter value. Valid values range is from -180 to 180°. Default value is 0.
557:                 */
558:                public static final ParameterDescriptor LONGITUDE_OF_CENTRE = createDescriptor(
559:                        new NamedIdentifier[] {
560:                                new NamedIdentifier(Citations.OGC,
561:                                        "longitude_of_center"),
562:                                new NamedIdentifier(Citations.EPSG,
563:                                        "Longitude of natural origin"),
564:                                new NamedIdentifier(Citations.ESRI,
565:                                        "central_meridian"),
566:                                new NamedIdentifier(Citations.GEOTIFF,
567:                                        "ProjCenterLong") }, 0, -180, 180,
568:                        NonSI.DEGREE_ANGLE);
569:
570:                /**
571:                 * The parameters group.
572:                 */
573:                static final ParameterDescriptorGroup PARAMETERS = createDescriptorGroup(
574:                        new NamedIdentifier[] {
575:                                new NamedIdentifier(Citations.OGC,
576:                                        "Lambert_Azimuthal_Equal_Area"),
577:                                new NamedIdentifier(Citations.EPSG,
578:                                        "Lambert Azimuthal Equal Area"),
579:                                new NamedIdentifier(Citations.GEOTIFF,
580:                                        "CT_LambertAzimEqualArea"),
581:                                new NamedIdentifier(Citations.EPSG, "9820"), },
582:                        new ParameterDescriptor[] { SEMI_MAJOR, SEMI_MINOR,
583:                                LATITUDE_OF_CENTRE, LONGITUDE_OF_CENTRE,
584:                                FALSE_EASTING, FALSE_NORTHING });
585:
586:                /**
587:                 * Constructs a new provider.
588:                 */
589:                public Provider() {
590:                    super (PARAMETERS);
591:                }
592:
593:                /**
594:                 * Creates a transform from the specified group of parameter values.
595:                 *
596:                 * @param  parameters The group of parameter values.
597:                 * @return The created math transform.
598:                 * @throws ParameterNotFoundException if a required parameter was not found.
599:                 */
600:                public MathTransform createMathTransform(
601:                        final ParameterValueGroup parameters)
602:                        throws ParameterNotFoundException {
603:                    return isSpherical(parameters) ? new Spherical(parameters)
604:                            : new LambertAzimuthalEqualArea(parameters);
605:                }
606:            }
607:        }
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.