Source Code Cross Referenced for TEA.java in  » Groupware » hipergate » com » knowgate » misc » Java Source Code / Java DocumentationJava Source Code and Java Documentation

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » Groupware » hipergate » com.knowgate.misc 
Source Cross Referenced  Class Diagram Java Document (Java Doc) 


001:        package com.knowgate.misc;
002:
003:        import java.math.*;
004:
005:        /**
006:         * Tiny Encryption Algorithm.
007:         * <P>
008:         * (The following description is from the web page for the C and Assembler source
009:         * code at <A HREF="http://vader.brad.ac.uk/tea/tea.shtml"> University of Bradford
010:         * Yorkshire, England - The Cryptography & Computer Communications Security
011:         * Group</A>) The description is used with the permission of the authors,
012:         * Dr S J Shepherd and D A G Gillies.
013:         * <P>
014:         * The Tiny Encryption Algorithm is one of the fastest and most efficient
015:         * cryptographic algorithms in existence. It was developed by David
016:         * Wheeler and Roger Needham at the Computer Laboratory of Cambridge
017:         * University. It is a Feistel cipher which uses operations from mixed
018:         * (orthogonal) algebraic groups - XORs and additions in this case. It
019:         * encrypts 64 data bits at a time using a 128-bit key. It seems highly
020:         * resistant to differential cryptanalysis, and achieves complete
021:         * diffusion (where a one bit difference in the plaintext will cause
022:         * approximately 32 bit differences in the ciphertext) after only six
023:         * rounds. Performance on a modern desktop computer or workstation is
024:         * very impressive.
025:         * <P>
026:         * TEA takes 64 bits of data in v[0] and v[1], and 128 bits of key in
027:         * k[0] - k[3]. The result is returned in w[0] and w[1]. Returning the
028:         * result separately makes implementation of cipher modes other than
029:         * Electronic Code Book a little bit easier.
030:         * <P>
031:         * TEA can be operated in any of the modes of DES.
032:         * <P>
033:         * n is the number of iterations. 32 is ample, 16 is sufficient, as few
034:         * as eight should be OK for most applications, especially ones where
035:         * the data age quickly (real-time video, for example). The algorithm
036:         * achieves good dispersion after six iterations. The iteration count
037:         * can be made variable if required.
038:         * <P>
039:         * Note this algorithm is optimised for 32-bit CPUs with fast shift
040:         * capabilities. It can very easily be ported to assembly language on
041:         * most CPUs.
042:         * <P>
043:         * delta is chosen to be the Golden ratio ((5/4)1/2 - 1/2 ~ 0.618034)
044:         * multiplied by 232. On entry to decipher(), sum is set to be delta *
045:         * n. Which way round you call the functions is arbitrary: DK(EK(P)) =
046:         * EK(DK(P)) where EK and DK are encryption and decryption under key K
047:         * respectively.
048:         * <P>
049:         * Translator's notes:
050:         * <UL>
051:         * <LI> Although the <I>this algorithm is optimised for
052:         * 32-bit CPUs with fast shift capabilities</I> Java manages to throw
053:         * it all away by not providing unsigned values resulting in the excessive
054:         * use of AND's to prevent sign extension on promotion of a byte
055:         * to an integer.
056:         * </LI>
057:         * <P>
058:         * <LI>
059:         * The following description is taken from the
060:         * Mach5 Software cryptography archives at
061:         * <A HREF="http://www.mach5.com/crypto/">www.mach5.com/crypto</A>.
062:         * <p><font face="Arial" size="4">Tiny Encryption Algorithm (TEA)</font><br>
063:         * <font size="3" face="Arial">TEA is a cryptographic algorithm designed to minimize memory
064:         * footprint, and maximize speed. However, the cryptographers from <a
065:         *
066:         * href="http://www.counterpane.com">Counterpane Systems</a> have <a
067:         *
068:         * href="http://www.cs.berkeley.edu/~daw/keysched-crypto96.ps">discovered three related-key
069:         * attacks </a>on TEA, the best of which requires only 223 chosen plaintexts and one related
070:         * key query. The problems arise from the overly simple key schedule. Each TEA key can be
071:         * found to have three other equivalent keys, as described in <a
072:         *
073:         * href="http://www.cs.berkeley.edu/~daw/keysched-icics97.ps">a paper</a> by <a
074:         *
075:         * href="http://www.cs.berkeley.edu/~daw/">David Wagner</a>, John Kelsey, and <a
076:         *
077:         * href="http://www.counterpane.com/schneier.html">Bruce Schneier</a>. This precludes the
078:         * possibility of using TEA as a hash function. Roger Needham and David Wheeler have proposed
079:         * <a href="http://www.cl.cam.ac.uk/ftp/users/djw3/xtea.ps">extensions to TEA</a> that
080:         * counters the above attacks.</font></p>
081:         * </LI>
082:         * </UL>
083:         *
084:         * <P> Example of use:
085:         * <PRE>
086:         * byte key[] = new BigInteger("39e858f86df9b909a8c87cb8d9ad599", 16).toByteArray();
087:         * TEA t = new TEA(key);
088:         * <BR>
089:         * String src = "hello world!";
090:         * System.out.println("input = " + src);
091:         * byte plainSource[] = src.getBytes();
092:         * int enc[] = t.encode(plainSource, plainSource.length);
093:         * System.out.println(t.padding() + " bytes added as padding.");
094:         * byte dec[] = t.decode(enc);
095:         * System.out.println("output = " + new String(dec));
096:         * </PRE>
097:         *
098:         * @author Translated by Michael Lecuyer (mjl@theorem.com) from the C Language.
099:         * @version 1.0 Sep 8, 1998
100:         * @since JDK1.1
101:         */
102:
103:        public class TEA {
104:            private int _key[]; // The 128 bit key.
105:            private byte _keyBytes[]; // original key as found
106:            private int _padding; // amount of padding added in byte --> integer conversion.
107:
108:            /**
109:             * Encodes and decodes "Hello world!" for your personal pleasure.
110:             */
111:            public static void main(String args[]) {
112:                // A simple test of TEA.
113:
114:                byte key[] = new BigInteger("39e858f86df9b909a8c87cb8d9ad599",
115:                        16).toByteArray();
116:                TEA t = new TEA(key);
117:
118:                String src = "hello world!";
119:                System.out.println("input = " + src);
120:                byte plainSource[] = src.getBytes();
121:                int enc[] = t.encode(plainSource, plainSource.length);
122:                System.out.println(t.padding() + " bytes added as padding.");
123:                byte dec[] = t.decode(enc);
124:                System.out.println("output = " + new String(dec));
125:            }
126:
127:            /**
128:             * Accepts key for enciphering/deciphering.
129:             *
130:             * @throws ArrayIndexOutOfBoundsException if the key isn't the correct length.
131:             *
132:             * @param key 128 bit (16 byte) key.
133:             */
134:            public TEA(byte key[]) {
135:                int klen = key.length;
136:                _key = new int[4];
137:
138:                // Incorrect key length throws exception.
139:                if (klen != 16)
140:                    throw new ArrayIndexOutOfBoundsException(this .getClass()
141:                            .getName()
142:                            + ": Key is not 16 bytes");
143:
144:                int j, i;
145:                for (i = 0, j = 0; j < klen; j += 4, i++)
146:                    _key[i] = (key[j] << 24) | (((key[j + 1]) & 0xff) << 16)
147:                            | (((key[j + 2]) & 0xff) << 8)
148:                            | ((key[j + 3]) & 0xff);
149:
150:                _keyBytes = key; // save for toString.
151:            }
152:
153:            /**
154:             * Representation of TEA class
155:             */
156:            public String toString() {
157:                String tea = this .getClass().getName();
158:                tea += ": Tiny Encryption Algorithm (TEA)  key: "
159:                        + dumpBytes(_keyBytes);
160:                return tea;
161:            }
162:
163:            /**
164:             * Encipher two <code>int</code>s.
165:             * Replaces the original contents of the parameters with the results.
166:             * The integers are usually created from 8 bytes.
167:             * The usual way to collect bytes to the int array is:
168:             * <PRE>
169:             * byte ba[] = { .... };
170:             * int v[] = new int[2];
171:             * v[0] = (ba[j] << 24 ) | (((ba[j+1])&0xff) << 16) | (((ba[j+2])&0xff) << 8) | ((ba[j+3])&0xff);
172:             * v[1] = (ba[j+4] << 24 ) | (((ba[j+5])&0xff) << 16) | (((ba[j+6])&0xff) << 8) | ((ba[j+7])&0xff);
173:             * v = encipher(v);
174:             * </PRE>
175:             *
176:             * @param v two <code>int</code> array as input.
177:             *
178:             * @return array of two <code>int</code>s, enciphered.
179:             */
180:            public int[] encipher(int v[]) {
181:                int y = v[0];
182:                int z = v[1];
183:                int sum = 0;
184:                int delta = 0x9E3779B9;
185:                int a = _key[0];
186:                int b = _key[1];
187:                int c = _key[2];
188:                int d = _key[3];
189:                int n = 32;
190:
191:                while (n-- > 0) {
192:                    sum += delta;
193:                    y += (z << 4) + a ^ z + sum ^ (z >> 5) + b;
194:                    z += (y << 4) + c ^ y + sum ^ (y >> 5) + d;
195:                }
196:
197:                v[0] = y;
198:                v[1] = z;
199:
200:                return v;
201:            }
202:
203:            /**
204:             * Decipher two <code>int</code>s.
205:             * Replaces the original contents of the parameters with the results.
206:             * The integers are usually decocted to 8 bytes.
207:             * The decoction of the <code>int</code>s to bytes can be done
208:             * this way.
209:             * <PRE>
210:             * int x[] = decipher(ins);
211:             * outb[j]   = (byte)(x[0] >>> 24);
212:             * outb[j+1] = (byte)(x[0] >>> 16);
213:             * outb[j+2] = (byte)(x[0] >>> 8);
214:             * outb[j+3] = (byte)(x[0]);
215:             * outb[j+4] = (byte)(x[1] >>> 24);
216:             * outb[j+5] = (byte)(x[1] >>> 16);
217:             * outb[j+6] = (byte)(x[1] >>> 8);
218:             * outb[j+7] = (byte)(x[1]);
219:             * </PRE>
220:             *
221:             * @param v <code>int</code> array of 2
222:             *
223:             * @return deciphered <code>int</code> array of 2
224:             */
225:            public int[] decipher(int v[]) {
226:                int y = v[0];
227:                int z = v[1];
228:                int sum = 0xC6EF3720;
229:                int delta = 0x9E3779B9;
230:                int a = _key[0];
231:                int b = _key[1];
232:                int c = _key[2];
233:                int d = _key[3];
234:                int n = 32;
235:
236:                // sum = delta<<5, in general sum = delta * n
237:
238:                while (n-- > 0) {
239:                    z -= (y << 4) + c ^ y + sum ^ (y >> 5) + d;
240:                    y -= (z << 4) + a ^ z + sum ^ (z >> 5) + b;
241:                    sum -= delta;
242:                }
243:
244:                v[0] = y;
245:                v[1] = z;
246:
247:                return v;
248:            }
249:
250:            /**
251:             * Encipher two <code>bytes</code>s.
252:             *
253:             * @param v <code>byte</code> array of 2
254:             *
255:             * @return enciphered <code>byte</code> array of 2
256:             */
257:            public byte[] encipher(byte v[]) {
258:                byte y = v[0];
259:                byte z = v[1];
260:                int sum = 0;
261:                int delta = 0x9E3779B9;
262:                int a = _key[0];
263:                int b = _key[1];
264:                int c = _key[2];
265:                int d = _key[3];
266:                int n = 32;
267:
268:                while (n-- > 0) {
269:                    sum += delta;
270:                    y += (z << 4) + a ^ z + sum ^ (z >> 5) + b;
271:                    z += (y << 4) + c ^ y + sum ^ (y >> 5) + d;
272:                }
273:
274:                v[0] = y;
275:                v[1] = z;
276:
277:                return v;
278:            }
279:
280:            /**
281:             * Decipher two <code>bytes</code>s.
282:             *
283:             * @param v <code>byte</code> array of 2
284:             *
285:             * @return decipherd <code>byte</code> array of 2
286:             */
287:            public byte[] decipher(byte v[]) {
288:                byte y = v[0];
289:                byte z = v[1];
290:                int sum = 0xC6EF3720;
291:                int delta = 0x9E3779B9;
292:                int a = _key[0];
293:                int b = _key[1];
294:                int c = _key[2];
295:                int d = _key[3];
296:                int n = 32;
297:
298:                // sum = delta<<5, in general sum = delta * n
299:
300:                while (n-- > 0) {
301:                    z -= (y << 4) + c ^ y + sum ^ (y >> 5) + d;
302:                    y -= (z << 4) + a ^ z + sum ^ (z >> 5) + b;
303:                    sum -= delta;
304:                }
305:
306:                v[0] = y;
307:                v[1] = z;
308:
309:                return v;
310:            }
311:
312:            /**
313:             * Byte wrapper for encoding.
314:             * Converts bytes to ints.
315:             * Padding will be added if required.
316:             *
317:             * @param b incoming <code>byte</code> array
318:             *
319:             * @param byte count
320:             *
321:             * @return integer conversion array, possibly with padding.
322:             *
323:             * @see #padding
324:             */
325:            public int[] encode(byte b[], int count) {
326:                int j, i;
327:                int bLen = count;
328:                byte bp[] = b;
329:
330:                _padding = bLen % 8;
331:                if (_padding != 0) // Add some padding, if necessary.
332:                {
333:                    _padding = 8 - (bLen % 8);
334:                    bp = new byte[bLen + _padding];
335:                    System.arraycopy(b, 0, bp, 0, bLen);
336:                    bLen = bp.length;
337:                }
338:
339:                int intCount = bLen / 4;
340:                int r[] = new int[2];
341:                int out[] = new int[intCount];
342:
343:                for (i = 0, j = 0; j < bLen; j += 8, i += 2) {
344:                    // Java's unforgivable lack of unsigneds causes more bit
345:                    // twiddling than this language really needs.
346:                    r[0] = (bp[j] << 24) | (((bp[j + 1]) & 0xff) << 16)
347:                            | (((bp[j + 2]) & 0xff) << 8)
348:                            | ((bp[j + 3]) & 0xff);
349:                    r[1] = (bp[j + 4] << 24) | (((bp[j + 5]) & 0xff) << 16)
350:                            | (((bp[j + 6]) & 0xff) << 8)
351:                            | ((bp[j + 7]) & 0xff);
352:                    encipher(r);
353:                    out[i] = r[0];
354:                    out[i + 1] = r[1];
355:                }
356:
357:                return out;
358:            }
359:
360:            /**
361:             * Report how much padding was done in the last encode.
362:             *
363:             * @return bytes of padding added
364:             *
365:             * @see #encode
366:             */
367:            public int padding() {
368:                return _padding;
369:            }
370:
371:            /**
372:             * Convert a byte array to ints and then decode.
373:             * There may be some padding at the end of the byte array from
374:             * the previous encode operation.
375:             *
376:             * @param b bytes to decode
377:             * @param count number of bytes in the array to decode
378:             *
379:             * @return <code>byte</code> array of decoded bytes.
380:             */
381:            public byte[] decode(byte b[], int count) {
382:                int i, j;
383:
384:                int intCount = count / 4;
385:                int ini[] = new int[intCount];
386:                for (i = 0, j = 0; i < intCount; i += 2, j += 8) {
387:                    ini[i] = (b[j] << 24) | (((b[j + 1]) & 0xff) << 16)
388:                            | (((b[j + 2]) & 0xff) << 8) | ((b[j + 3]) & 0xff);
389:                    ini[i + 1] = (b[j + 4] << 24) | (((b[j + 5]) & 0xff) << 16)
390:                            | (((b[j + 6]) & 0xff) << 8) | ((b[j + 7]) & 0xff);
391:                }
392:                return decode(ini);
393:            }
394:
395:            /**
396:             * Decode an integer array.
397:             * There may be some padding at the end of the byte array from
398:             * the previous encode operation.
399:             *
400:             * @param b bytes to decode
401:             * @param count number of bytes in the array to decode
402:             *
403:             * @return <code>byte</code> array of decoded bytes.
404:             */
405:            public byte[] decode(int b[]) {
406:                // create the large number and start stripping ints out, two at a time.
407:                int intCount = b.length;
408:
409:                byte outb[] = new byte[intCount * 4];
410:                int tmp[] = new int[2];
411:
412:                // decipher all the ints.
413:                int i, j;
414:                for (j = 0, i = 0; i < intCount; i += 2, j += 8) {
415:                    tmp[0] = b[i];
416:                    tmp[1] = b[i + 1];
417:                    decipher(tmp);
418:                    outb[j] = (byte) (tmp[0] >>> 24);
419:                    outb[j + 1] = (byte) (tmp[0] >>> 16);
420:                    outb[j + 2] = (byte) (tmp[0] >>> 8);
421:                    outb[j + 3] = (byte) (tmp[0]);
422:                    outb[j + 4] = (byte) (tmp[1] >>> 24);
423:                    outb[j + 5] = (byte) (tmp[1] >>> 16);
424:                    outb[j + 6] = (byte) (tmp[1] >>> 8);
425:                    outb[j + 7] = (byte) (tmp[1]);
426:                }
427:
428:                return outb;
429:            }
430:
431:            // Display some bytes in HEX.
432:            //
433:            private String dumpBytes(byte b[]) {
434:                StringBuffer r = new StringBuffer();
435:                final String hex = "0123456789ABCDEF";
436:
437:                for (int i = 0; i < b.length; i++) {
438:                    int c = ((b[i]) >>> 4) & 0xf;
439:                    r.append(hex.charAt(c));
440:                    c = ((int) b[i] & 0xf);
441:                    r.append(hex.charAt(c));
442:                }
443:
444:                return r.toString();
445:            }
446:
447:        }
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.