Source Code Cross Referenced for TernaryTree.java in  » PDF » pdf-itext » com » lowagie » text » pdf » hyphenation » Java Source Code / Java DocumentationJava Source Code and Java Documentation

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » PDF » pdf itext » com.lowagie.text.pdf.hyphenation 
Source Cross Referenced  Class Diagram Java Document (Java Doc) 


001:        /*
002:         * Copyright 1999-2004 The Apache Software Foundation.
003:         * 
004:         * Licensed under the Apache License, Version 2.0 (the "License");
005:         * you may not use this file except in compliance with the License.
006:         * You may obtain a copy of the License at
007:         * 
008:         *      http://www.apache.org/licenses/LICENSE-2.0
009:         * 
010:         * Unless required by applicable law or agreed to in writing, software
011:         * distributed under the License is distributed on an "AS IS" BASIS,
012:         * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
013:         * See the License for the specific language governing permissions and
014:         * limitations under the License.
015:         */
016:
017:        package com.lowagie.text.pdf.hyphenation;
018:
019:        import java.io.Serializable;
020:        import java.util.Enumeration;
021:        import java.util.Stack;
022:
023:        /**
024:         * <h2>Ternary Search Tree.</h2>
025:         *
026:         * <p>A ternary search tree is a hibrid between a binary tree and
027:         * a digital search tree (trie). Keys are limited to strings.
028:         * A data value of type char is stored in each leaf node.
029:         * It can be used as an index (or pointer) to the data.
030:         * Branches that only contain one key are compressed to one node
031:         * by storing a pointer to the trailer substring of the key.
032:         * This class is intended to serve as base class or helper class
033:         * to implement Dictionary collections or the like. Ternary trees
034:         * have some nice properties as the following: the tree can be
035:         * traversed in sorted order, partial matches (wildcard) can be
036:         * implemented, retrieval of all keys within a given distance
037:         * from the target, etc. The storage requirements are higher than
038:         * a binary tree but a lot less than a trie. Performance is
039:         * comparable with a hash table, sometimes it outperforms a hash
040:         * function (most of the time can determine a miss faster than a hash).</p>
041:         *
042:         * <p>The main purpose of this java port is to serve as a base for
043:         * implementing TeX's hyphenation algorithm (see The TeXBook,
044:         * appendix H). Each language requires from 5000 to 15000 hyphenation
045:         * patterns which will be keys in this tree. The strings patterns
046:         * are usually small (from 2 to 5 characters), but each char in the
047:         * tree is stored in a node. Thus memory usage is the main concern.
048:         * We will sacrify 'elegance' to keep memory requirenments to the
049:         * minimum. Using java's char type as pointer (yes, I know pointer
050:         * it is a forbidden word in java) we can keep the size of the node
051:         * to be just 8 bytes (3 pointers and the data char). This gives
052:         * room for about 65000 nodes. In my tests the english patterns
053:         * took 7694 nodes and the german patterns 10055 nodes,
054:         * so I think we are safe.</p>
055:         *
056:         * <p>All said, this is a map with strings as keys and char as value.
057:         * Pretty limited!. It can be extended to a general map by
058:         * using the string representation of an object and using the
059:         * char value as an index to an array that contains the object
060:         * values.</p>
061:         *
062:         * @author cav@uniscope.co.jp
063:         */
064:
065:        public class TernaryTree implements  Cloneable, Serializable {
066:
067:            /**
068:             * We use 4 arrays to represent a node. I guess I should have created
069:             * a proper node class, but somehow Knuth's pascal code made me forget
070:             * we now have a portable language with virtual memory management and
071:             * automatic garbage collection! And now is kind of late, furthermore,
072:             * if it ain't broken, don't fix it.
073:             */
074:
075:            private static final long serialVersionUID = 5313366505322983510L;
076:
077:            /**
078:             * Pointer to low branch and to rest of the key when it is
079:             * stored directly in this node, we don't have unions in java!
080:             */
081:            protected char[] lo;
082:
083:            /**
084:             * Pointer to high branch.
085:             */
086:            protected char[] hi;
087:
088:            /**
089:             * Pointer to equal branch and to data when this node is a string terminator.
090:             */
091:            protected char[] eq;
092:
093:            /**
094:             * <P>The character stored in this node: splitchar.
095:             * Two special values are reserved:</P>
096:             * <ul><li>0x0000 as string terminator</li>
097:             * <li>0xFFFF to indicate that the branch starting at
098:             * this node is compressed</li></ul>
099:             * <p>This shouldn't be a problem if we give the usual semantics to
100:             * strings since 0xFFFF is garanteed not to be an Unicode character.</p>
101:             */
102:            protected char[] sc;
103:
104:            /**
105:             * This vector holds the trailing of the keys when the branch is compressed.
106:             */
107:            protected CharVector kv;
108:
109:            protected char root;
110:            protected char freenode;
111:            protected int length; // number of items in tree
112:
113:            protected static final int BLOCK_SIZE = 2048; // allocation size for arrays
114:
115:            TernaryTree() {
116:                init();
117:            }
118:
119:            protected void init() {
120:                root = 0;
121:                freenode = 1;
122:                length = 0;
123:                lo = new char[BLOCK_SIZE];
124:                hi = new char[BLOCK_SIZE];
125:                eq = new char[BLOCK_SIZE];
126:                sc = new char[BLOCK_SIZE];
127:                kv = new CharVector();
128:            }
129:
130:            /**
131:             * Branches are initially compressed, needing
132:             * one node per key plus the size of the string
133:             * key. They are decompressed as needed when
134:             * another key with same prefix
135:             * is inserted. This saves a lot of space,
136:             * specially for long keys.
137:             */
138:            public void insert(String key, char val) {
139:                // make sure we have enough room in the arrays
140:                int len = key.length() + 1; // maximum number of nodes that may be generated
141:                if (freenode + len > eq.length) {
142:                    redimNodeArrays(eq.length + BLOCK_SIZE);
143:                }
144:                char strkey[] = new char[len--];
145:                key.getChars(0, len, strkey, 0);
146:                strkey[len] = 0;
147:                root = insert(root, strkey, 0, val);
148:            }
149:
150:            public void insert(char[] key, int start, char val) {
151:                int len = strlen(key) + 1;
152:                if (freenode + len > eq.length) {
153:                    redimNodeArrays(eq.length + BLOCK_SIZE);
154:                }
155:                root = insert(root, key, start, val);
156:            }
157:
158:            /**
159:             * The actual insertion function, recursive version.
160:             */
161:            private char insert(char p, char[] key, int start, char val) {
162:                int len = strlen(key, start);
163:                if (p == 0) {
164:                    // this means there is no branch, this node will start a new branch.
165:                    // Instead of doing that, we store the key somewhere else and create
166:                    // only one node with a pointer to the key
167:                    p = freenode++;
168:                    eq[p] = val; // holds data
169:                    length++;
170:                    hi[p] = 0;
171:                    if (len > 0) {
172:                        sc[p] = 0xFFFF; // indicates branch is compressed
173:                        lo[p] = (char) kv.alloc(len + 1); // use 'lo' to hold pointer to key
174:                        strcpy(kv.getArray(), lo[p], key, start);
175:                    } else {
176:                        sc[p] = 0;
177:                        lo[p] = 0;
178:                    }
179:                    return p;
180:                }
181:
182:                if (sc[p] == 0xFFFF) {
183:                    // branch is compressed: need to decompress
184:                    // this will generate garbage in the external key array
185:                    // but we can do some garbage collection later
186:                    char pp = freenode++;
187:                    lo[pp] = lo[p]; // previous pointer to key
188:                    eq[pp] = eq[p]; // previous pointer to data
189:                    lo[p] = 0;
190:                    if (len > 0) {
191:                        sc[p] = kv.get(lo[pp]);
192:                        eq[p] = pp;
193:                        lo[pp]++;
194:                        if (kv.get(lo[pp]) == 0) {
195:                            // key completly decompressed leaving garbage in key array
196:                            lo[pp] = 0;
197:                            sc[pp] = 0;
198:                            hi[pp] = 0;
199:                        } else {
200:                            // we only got first char of key, rest is still there
201:                            sc[pp] = 0xFFFF;
202:                        }
203:                    } else {
204:                        // In this case we can save a node by swapping the new node
205:                        // with the compressed node
206:                        sc[pp] = 0xFFFF;
207:                        hi[p] = pp;
208:                        sc[p] = 0;
209:                        eq[p] = val;
210:                        length++;
211:                        return p;
212:                    }
213:                }
214:                char s = key[start];
215:                if (s < sc[p]) {
216:                    lo[p] = insert(lo[p], key, start, val);
217:                } else if (s == sc[p]) {
218:                    if (s != 0) {
219:                        eq[p] = insert(eq[p], key, start + 1, val);
220:                    } else {
221:                        // key already in tree, overwrite data
222:                        eq[p] = val;
223:                    }
224:                } else {
225:                    hi[p] = insert(hi[p], key, start, val);
226:                }
227:                return p;
228:            }
229:
230:            /**
231:             * Compares 2 null terminated char arrays
232:             */
233:            public static int strcmp(char[] a, int startA, char[] b, int startB) {
234:                for (; a[startA] == b[startB]; startA++, startB++) {
235:                    if (a[startA] == 0) {
236:                        return 0;
237:                    }
238:                }
239:                return a[startA] - b[startB];
240:            }
241:
242:            /**
243:             * Compares a string with null terminated char array
244:             */
245:            public static int strcmp(String str, char[] a, int start) {
246:                int i, d, len = str.length();
247:                for (i = 0; i < len; i++) {
248:                    d = (int) str.charAt(i) - a[start + i];
249:                    if (d != 0) {
250:                        return d;
251:                    }
252:                    if (a[start + i] == 0) {
253:                        return d;
254:                    }
255:                }
256:                if (a[start + i] != 0) {
257:                    return (int) -a[start + i];
258:                }
259:                return 0;
260:
261:            }
262:
263:            public static void strcpy(char[] dst, int di, char[] src, int si) {
264:                while (src[si] != 0) {
265:                    dst[di++] = src[si++];
266:                }
267:                dst[di] = 0;
268:            }
269:
270:            public static int strlen(char[] a, int start) {
271:                int len = 0;
272:                for (int i = start; i < a.length && a[i] != 0; i++) {
273:                    len++;
274:                }
275:                return len;
276:            }
277:
278:            public static int strlen(char[] a) {
279:                return strlen(a, 0);
280:            }
281:
282:            public int find(String key) {
283:                int len = key.length();
284:                char strkey[] = new char[len + 1];
285:                key.getChars(0, len, strkey, 0);
286:                strkey[len] = 0;
287:
288:                return find(strkey, 0);
289:            }
290:
291:            public int find(char[] key, int start) {
292:                int d;
293:                char p = root;
294:                int i = start;
295:                char c;
296:
297:                while (p != 0) {
298:                    if (sc[p] == 0xFFFF) {
299:                        if (strcmp(key, i, kv.getArray(), lo[p]) == 0) {
300:                            return eq[p];
301:                        } else {
302:                            return -1;
303:                        }
304:                    }
305:                    c = key[i];
306:                    d = c - sc[p];
307:                    if (d == 0) {
308:                        if (c == 0) {
309:                            return eq[p];
310:                        }
311:                        i++;
312:                        p = eq[p];
313:                    } else if (d < 0) {
314:                        p = lo[p];
315:                    } else {
316:                        p = hi[p];
317:                    }
318:                }
319:                return -1;
320:            }
321:
322:            public boolean knows(String key) {
323:                return (find(key) >= 0);
324:            }
325:
326:            // redimension the arrays
327:            private void redimNodeArrays(int newsize) {
328:                int len = newsize < lo.length ? newsize : lo.length;
329:                char[] na = new char[newsize];
330:                System.arraycopy(lo, 0, na, 0, len);
331:                lo = na;
332:                na = new char[newsize];
333:                System.arraycopy(hi, 0, na, 0, len);
334:                hi = na;
335:                na = new char[newsize];
336:                System.arraycopy(eq, 0, na, 0, len);
337:                eq = na;
338:                na = new char[newsize];
339:                System.arraycopy(sc, 0, na, 0, len);
340:                sc = na;
341:            }
342:
343:            public int size() {
344:                return length;
345:            }
346:
347:            public Object clone() {
348:                TernaryTree t = new TernaryTree();
349:                t.lo = (char[]) this .lo.clone();
350:                t.hi = (char[]) this .hi.clone();
351:                t.eq = (char[]) this .eq.clone();
352:                t.sc = (char[]) this .sc.clone();
353:                t.kv = (CharVector) this .kv.clone();
354:                t.root = this .root;
355:                t.freenode = this .freenode;
356:                t.length = this .length;
357:
358:                return t;
359:            }
360:
361:            /**
362:             * Recursively insert the median first and then the median of the
363:             * lower and upper halves, and so on in order to get a balanced
364:             * tree. The array of keys is assumed to be sorted in ascending
365:             * order.
366:             */
367:            protected void insertBalanced(String[] k, char[] v, int offset,
368:                    int n) {
369:                int m;
370:                if (n < 1) {
371:                    return;
372:                }
373:                m = n >> 1;
374:
375:                insert(k[m + offset], v[m + offset]);
376:                insertBalanced(k, v, offset, m);
377:
378:                insertBalanced(k, v, offset + m + 1, n - m - 1);
379:            }
380:
381:            /**
382:             * Balance the tree for best search performance
383:             */
384:            public void balance() {
385:                // System.out.print("Before root splitchar = "); System.out.println(sc[root]);
386:
387:                int i = 0, n = length;
388:                String[] k = new String[n];
389:                char[] v = new char[n];
390:                Iterator iter = new Iterator();
391:                while (iter.hasMoreElements()) {
392:                    v[i] = iter.getValue();
393:                    k[i++] = (String) iter.nextElement();
394:                }
395:                init();
396:                insertBalanced(k, v, 0, n);
397:
398:                // With uniform letter distribution sc[root] should be around 'm'
399:                // System.out.print("After root splitchar = "); System.out.println(sc[root]);
400:            }
401:
402:            /**
403:             * Each node stores a character (splitchar) which is part of
404:             * some key(s). In a compressed branch (one that only contain
405:             * a single string key) the trailer of the key which is not
406:             * already in nodes is stored  externally in the kv array.
407:             * As items are inserted, key substrings decrease.
408:             * Some substrings may completely  disappear when the whole
409:             * branch is totally decompressed.
410:             * The tree is traversed to find the key substrings actually
411:             * used. In addition, duplicate substrings are removed using
412:             * a map (implemented with a TernaryTree!).
413:             *
414:             */
415:            public void trimToSize() {
416:                // first balance the tree for best performance
417:                balance();
418:
419:                // redimension the node arrays
420:                redimNodeArrays(freenode);
421:
422:                // ok, compact kv array
423:                CharVector kx = new CharVector();
424:                kx.alloc(1);
425:                TernaryTree map = new TernaryTree();
426:                compact(kx, map, root);
427:                kv = kx;
428:                kv.trimToSize();
429:            }
430:
431:            private void compact(CharVector kx, TernaryTree map, char p) {
432:                int k;
433:                if (p == 0) {
434:                    return;
435:                }
436:                if (sc[p] == 0xFFFF) {
437:                    k = map.find(kv.getArray(), lo[p]);
438:                    if (k < 0) {
439:                        k = kx.alloc(strlen(kv.getArray(), lo[p]) + 1);
440:                        strcpy(kx.getArray(), k, kv.getArray(), lo[p]);
441:                        map.insert(kx.getArray(), k, (char) k);
442:                    }
443:                    lo[p] = (char) k;
444:                } else {
445:                    compact(kx, map, lo[p]);
446:                    if (sc[p] != 0) {
447:                        compact(kx, map, eq[p]);
448:                    }
449:                    compact(kx, map, hi[p]);
450:                }
451:            }
452:
453:            public Enumeration keys() {
454:                return new Iterator();
455:            }
456:
457:            public class Iterator implements  Enumeration {
458:
459:                /**
460:                 * current node index
461:                 */
462:                int cur;
463:
464:                /**
465:                 * current key
466:                 */
467:                String curkey;
468:
469:                private class Item implements  Cloneable {
470:                    char parent;
471:                    char child;
472:
473:                    public Item() {
474:                        parent = 0;
475:                        child = 0;
476:                    }
477:
478:                    public Item(char p, char c) {
479:                        parent = p;
480:                        child = c;
481:                    }
482:
483:                    public Object clone() {
484:                        return new Item(parent, child);
485:                    }
486:
487:                }
488:
489:                /**
490:                 * Node stack
491:                 */
492:                Stack ns;
493:
494:                /**
495:                 * key stack implemented with a StringBuffer
496:                 */
497:                StringBuffer ks;
498:
499:                public Iterator() {
500:                    cur = -1;
501:                    ns = new Stack();
502:                    ks = new StringBuffer();
503:                    rewind();
504:                }
505:
506:                public void rewind() {
507:                    ns.removeAllElements();
508:                    ks.setLength(0);
509:                    cur = root;
510:                    run();
511:                }
512:
513:                public Object nextElement() {
514:                    String res = curkey;
515:                    cur = up();
516:                    run();
517:                    return res;
518:                }
519:
520:                public char getValue() {
521:                    if (cur >= 0) {
522:                        return eq[cur];
523:                    }
524:                    return 0;
525:                }
526:
527:                public boolean hasMoreElements() {
528:                    return (cur != -1);
529:                }
530:
531:                /**
532:                 * traverse upwards
533:                 */
534:                private int up() {
535:                    Item i = new Item();
536:                    int res = 0;
537:
538:                    if (ns.empty()) {
539:                        return -1;
540:                    }
541:
542:                    if (cur != 0 && sc[cur] == 0) {
543:                        return lo[cur];
544:                    }
545:
546:                    boolean climb = true;
547:
548:                    while (climb) {
549:                        i = (Item) ns.pop();
550:                        i.child++;
551:                        switch (i.child) {
552:                        case 1:
553:                            if (sc[i.parent] != 0) {
554:                                res = eq[i.parent];
555:                                ns.push(i.clone());
556:                                ks.append(sc[i.parent]);
557:                            } else {
558:                                i.child++;
559:                                ns.push(i.clone());
560:                                res = hi[i.parent];
561:                            }
562:                            climb = false;
563:                            break;
564:
565:                        case 2:
566:                            res = hi[i.parent];
567:                            ns.push(i.clone());
568:                            if (ks.length() > 0) {
569:                                ks.setLength(ks.length() - 1); // pop
570:                            }
571:                            climb = false;
572:                            break;
573:
574:                        default:
575:                            if (ns.empty()) {
576:                                return -1;
577:                            }
578:                            climb = true;
579:                            break;
580:                        }
581:                    }
582:                    return res;
583:                }
584:
585:                /**
586:                 * traverse the tree to find next key
587:                 */
588:                private int run() {
589:                    if (cur == -1) {
590:                        return -1;
591:                    }
592:
593:                    boolean leaf = false;
594:                    while (true) {
595:                        // first go down on low branch until leaf or compressed branch
596:                        while (cur != 0) {
597:                            if (sc[cur] == 0xFFFF) {
598:                                leaf = true;
599:                                break;
600:                            }
601:                            ns.push(new Item((char) cur, '\u0000'));
602:                            if (sc[cur] == 0) {
603:                                leaf = true;
604:                                break;
605:                            }
606:                            cur = lo[cur];
607:                        }
608:                        if (leaf) {
609:                            break;
610:                        }
611:                        // nothing found, go up one node and try again
612:                        cur = up();
613:                        if (cur == -1) {
614:                            return -1;
615:                        }
616:                    }
617:                    // The current node should be a data node and
618:                    // the key should be in the key stack (at least partially)
619:                    StringBuffer buf = new StringBuffer(ks.toString());
620:                    if (sc[cur] == 0xFFFF) {
621:                        int p = lo[cur];
622:                        while (kv.get(p) != 0) {
623:                            buf.append(kv.get(p++));
624:                        }
625:                    }
626:                    curkey = buf.toString();
627:                    return 0;
628:                }
629:
630:            }
631:
632:            public void printStats() {
633:                System.out.println("Number of keys = "
634:                        + Integer.toString(length));
635:                System.out
636:                        .println("Node count = " + Integer.toString(freenode));
637:                // System.out.println("Array length = " + Integer.toString(eq.length));
638:                System.out.println("Key Array length = "
639:                        + Integer.toString(kv.length()));
640:
641:                /*
642:                 * for(int i=0; i<kv.length(); i++)
643:                 * if ( kv.get(i) != 0 )
644:                 * System.out.print(kv.get(i));
645:                 * else
646:                 * System.out.println("");
647:                 * System.out.println("Keys:");
648:                 * for(Enumeration enum = keys(); enum.hasMoreElements(); )
649:                 * System.out.println(enum.nextElement());
650:                 */
651:
652:            }
653:
654:            /*    public static void main(String[] args) throws Exception {
655:             TernaryTree tt = new TernaryTree();
656:             tt.insert("Carlos", 'C');
657:             tt.insert("Car", 'r');
658:             tt.insert("palos", 'l');
659:             tt.insert("pa", 'p');
660:             tt.trimToSize();
661:             System.out.println((char)tt.find("Car"));
662:             System.out.println((char)tt.find("Carlos"));
663:             System.out.println((char)tt.find("alto"));
664:             tt.printStats();
665:             }*/
666:
667:        }
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.