Java Doc for PolynomialSplineFunction.java in  » Science » Apache-commons-math-1.1 » org » apache » commons » math » analysis » Java Source Code / Java DocumentationJava Source Code and Java Documentation

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » Science » Apache commons math 1.1 » org.apache.commons.math.analysis 
Source Cross Reference  Class Diagram Java Document (Java Doc) 


java.lang.Object
   org.apache.commons.math.analysis.PolynomialSplineFunction

PolynomialSplineFunction
public class PolynomialSplineFunction implements DifferentiableUnivariateRealFunction,Serializable(Code)
Represents a polynomial spline function.

A polynomial spline function consists of a set of interpolating polynomials and an ascending array of domain knot points, determining the intervals over which the spline function is defined by the constituent polynomials. The polynomials are assumed to have been computed to match the values of another function at the knot points. The value consistency constraints are not currently enforced by PolynomialSplineFunction itself, but are assumed to hold among the polynomials and knot points passed to the constructor.

N.B.: The polynomials in the polynomials property must be centered on the knot points to compute the spline function values. See below.

The domain of the polynomial spline function is [smallest knot, largest knot]. Attempts to evaluate the function at values outside of this range generate IllegalArgumentExceptions.

The value of the polynomial spline function for an argument x is computed as follows:

  1. The knot array is searched to find the segment to which x belongs. If x is less than the smallest knot point or greater than the largest one, an IllegalArgumentException is thrown.
  2. Let j be the index of the largest knot point that is less than or equal to x. The value returned is
    polynomials[j](x - knot[j])

version:
   $Revision: 348761 $ $Date: 2005-11-24 09:04:20 -0700 (Thu, 24 Nov 2005) $



Constructor Summary
public  PolynomialSplineFunction(double knots, PolynomialFunction polynomials)
     Construct a polynomial spline function with the given segment delimiters and interpolating polynomials.

Method Summary
public  UnivariateRealFunctionderivative()
    
public  double[]getKnots()
     Returns an array copy of the knot points.

Returns a fresh copy of the array.

public  intgetN()
     Returns the number of spline segments = the number of polynomials = the number of knot points - 1.
public  PolynomialFunction[]getPolynomials()
     Returns a copy of the interpolating polynomials array.

Returns a fresh copy of the array.

public  PolynomialSplineFunctionpolynomialSplineDerivative()
    
public  doublevalue(double v)
     Compute the value for the function.

Throws FunctionEvaluationException if v is outside of the domain of the function.



Constructor Detail
PolynomialSplineFunction
public PolynomialSplineFunction(double knots, PolynomialFunction polynomials)(Code)
Construct a polynomial spline function with the given segment delimiters and interpolating polynomials.

The constructor copies both arrays and assigns the copies to the knots and polynomials properties, respectively.
Parameters:
  knots - spline segment interval delimiters
Parameters:
  polynomials - polynomial functions that make up the spline
throws:
  NullPointerException - if either of the input arrays is null
throws:
  IllegalArgumentException - if knots has length less than 2, polynomials.length != knots.length - 1 , or the knots arrayis not strictly increasing.





Method Detail
derivative
public UnivariateRealFunction derivative()(Code)
Returns the derivative of the polynomial spline function as a UnivariateRealFunction the derivative function



getKnots
public double[] getKnots()(Code)
Returns an array copy of the knot points.

Returns a fresh copy of the array. Changes made to the copy will not affect the knots property. the knot points




getN
public int getN()(Code)
Returns the number of spline segments = the number of polynomials = the number of knot points - 1. the number of spline segments



getPolynomials
public PolynomialFunction[] getPolynomials()(Code)
Returns a copy of the interpolating polynomials array.

Returns a fresh copy of the array. Changes made to the copy will not affect the polynomials property. the interpolating polynomials




polynomialSplineDerivative
public PolynomialSplineFunction polynomialSplineDerivative()(Code)
Returns the derivative of the polynomial spline function as a PolynomialSplineFunction the derivative function



value
public double value(double v) throws FunctionEvaluationException(Code)
Compute the value for the function.

Throws FunctionEvaluationException if v is outside of the domain of the function. The domain is [smallest knot, largest knot].

See PolynomialSplineFunction for details on the algorithm for computing the value of the function.
Parameters:
  v - the point for which the function value should be computed the value
throws:
  FunctionEvaluationException - if v is outside of the domain ofof the spline function (less than the smallest knot point or greaterthan the largest knot point)




Methods inherited from java.lang.Object
native protected Object clone() throws CloneNotSupportedException(Code)(Java Doc)
public boolean equals(Object obj)(Code)(Java Doc)
protected void finalize() throws Throwable(Code)(Java Doc)
final native public Class getClass()(Code)(Java Doc)
native public int hashCode()(Code)(Java Doc)
final native public void notify()(Code)(Java Doc)
final native public void notifyAll()(Code)(Java Doc)
public String toString()(Code)(Java Doc)
final native public void wait(long timeout) throws InterruptedException(Code)(Java Doc)
final public void wait(long timeout, int nanos) throws InterruptedException(Code)(Java Doc)
final public void wait() throws InterruptedException(Code)(Java Doc)

www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.