Java Doc for EmpiricalDistribution.java in  » Science » Apache-commons-math-1.1 » org » apache » commons » math » random » Java Source Code / Java DocumentationJava Source Code and Java Documentation

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » Science » Apache commons math 1.1 » org.apache.commons.math.random 
Source Cross Reference  Class Diagram Java Document (Java Doc) 


org.apache.commons.math.random.EmpiricalDistribution

All known Subclasses:   org.apache.commons.math.random.EmpiricalDistributionImpl,
EmpiricalDistribution
public interface EmpiricalDistribution (Code)
Represents an empirical probability distribution -- a probability distribution derived from observed data without making any assumptions about the functional form of the population distribution that the data come from.

Implementations of this interface maintain data structures, called distribution digests, that describe empirical distributions and support the following operations:

  • loading the distribution from a file of observed data values
  • dividing the input data into "bin ranges" and reporting bin frequency counts (data for histogram)
  • reporting univariate statistics describing the full set of data values as well as the observations within each bin
  • generating random values from the distribution
Applications can use EmpiricalDistribution implementations to build grouped frequnecy histograms representing the input data or to generate random values "like" those in the input file -- i.e., the values generated will follow the distribution of the values in the file.
version:
   $Revision: 155427 $ $Date: 2005-02-26 06:11:52 -0700 (Sat, 26 Feb 2005) $




Method Summary
 intgetBinCount()
     Returns the number of bins.
 ListgetBinStats()
     Returns a list of org.apache.commons.math.stat.descriptive.SummaryStatistics containing statistics describing the values in each of the bins.
 doublegetNextValue()
     Generates a random value from this distribution.
 StatisticalSummarygetSampleStats()
     Returns a org.apache.commons.math.stat.descriptive.StatisticalSummary describing this distribution.
 double[]getUpperBounds()
     Returns the array of upper bounds for the bins.
 booleanisLoaded()
     Property indicating whether or not the distribution has been loaded.
 voidload(double[] dataArray)
     Computes the empirical distribution from the provided array of numbers.
 voidload(File file)
     Computes the empirical distribution from the input file.
 voidload(URL url)
     Computes the empirical distribution using data read from a URL.



Method Detail
getBinCount
int getBinCount()(Code)
Returns the number of bins. the number of bins



getBinStats
List getBinStats()(Code)
Returns a list of org.apache.commons.math.stat.descriptive.SummaryStatistics containing statistics describing the values in each of the bins. The List is indexed on the bin number. List of bin statistics



getNextValue
double getNextValue() throws IllegalStateException(Code)
Generates a random value from this distribution. Preconditions:
  • the distribution must be loaded before invoking this method
the random value.
throws:
  IllegalStateException - if the distribution has not been loaded



getSampleStats
StatisticalSummary getSampleStats() throws IllegalStateException(Code)
Returns a org.apache.commons.math.stat.descriptive.StatisticalSummary describing this distribution. Preconditions:
  • the distribution must be loaded before invoking this method
the sample statistics
throws:
  IllegalStateException - if the distribution has not been loaded



getUpperBounds
double[] getUpperBounds()(Code)
Returns the array of upper bounds for the bins. Bins are:
[min,upperBounds[0]],(upperBounds[0],upperBounds[1]],..., (upperBounds[binCount-1],max]. array of bin upper bounds



isLoaded
boolean isLoaded()(Code)
Property indicating whether or not the distribution has been loaded. true if the distribution has been loaded



load
void load(double[] dataArray)(Code)
Computes the empirical distribution from the provided array of numbers.
Parameters:
  dataArray - the data array



load
void load(File file) throws IOException(Code)
Computes the empirical distribution from the input file.
Parameters:
  file - the input file
throws:
  IOException - if an IO error occurs



load
void load(URL url) throws IOException(Code)
Computes the empirical distribution using data read from a URL.
Parameters:
  url - url of the input file
throws:
  IOException - if an IO error occurs



www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.