Java Doc for EmpiricalDistributionImpl.java in  » Science » Apache-commons-math-1.1 » org » apache » commons » math » random » Java Source Code / Java DocumentationJava Source Code and Java Documentation

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » Science » Apache commons math 1.1 » org.apache.commons.math.random 
Source Cross Reference  Class Diagram Java Document (Java Doc) 


java.lang.Object
   org.apache.commons.math.random.EmpiricalDistributionImpl

EmpiricalDistributionImpl
public class EmpiricalDistributionImpl implements Serializable,EmpiricalDistribution(Code)
Implements EmpiricalDistribution interface. This implementation uses what amounts to the Variable Kernel Method with Gaussian smoothing:

Digesting the input file

  1. Pass the file once to compute min and max.
  2. Divide the range from min-max into binCount "bins."
  3. Pass the data file again, computing bin counts and univariate statistics (mean, std dev.) for each of the bins
  4. Divide the interval (0,1) into subintervals associated with the bins, with the length of a bin's subinterval proportional to its count.
Generating random values from the distribution
  1. Generate a uniformly distributed value in (0,1)
  2. Select the subinterval to which the value belongs.
  3. Generate a random Gaussian value with mean = mean of the associated bin and std dev = std dev of associated bin.

USAGE NOTES:

  • The binCount is set by default to 1000. A good rule of thumb is to set the bin count to approximately the length of the input file divided by 10.
  • The input file must be a plain text file containing one valid numeric entry per line.


version:
   $Revision: 348894 $ $Date: 2005-11-24 23:34:47 -0700 (Thu, 24 Nov 2005) $



Constructor Summary
public  EmpiricalDistributionImpl()
     Creates a new EmpiricalDistribution with the default bin count.
public  EmpiricalDistributionImpl(int binCount)
     Creates a new EmpiricalDistribution with the specified bin count.

Method Summary
public  intgetBinCount()
     Returns the number of bins.
public  ListgetBinStats()
     Returns an ArrayList of SummaryStatistics instances containing statistics describing the values in each of the bins.
public  doublegetNextValue()
     Generates a random value from this distribution.
public  StatisticalSummarygetSampleStats()
     Returns a StatisticalSummary describing this distribution.
public  double[]getUpperBounds()
     Returns (a fresh copy of) the array of upper bounds for the bins.
public  booleanisLoaded()
     Property indicating whether or not the distribution has been loaded.
public  voidload(double[] in)
     Computes the empirical distribution from the provided array of numbers.
public  voidload(URL url)
     Computes the empirical distribution using data read from a URL.
public  voidload(File file)
     Computes the empirical distribution from the input file.


Constructor Detail
EmpiricalDistributionImpl
public EmpiricalDistributionImpl()(Code)
Creates a new EmpiricalDistribution with the default bin count.



EmpiricalDistributionImpl
public EmpiricalDistributionImpl(int binCount)(Code)
Creates a new EmpiricalDistribution with the specified bin count.
Parameters:
  binCount - number of bins




Method Detail
getBinCount
public int getBinCount()(Code)
Returns the number of bins. the number of bins.



getBinStats
public List getBinStats()(Code)
Returns an ArrayList of SummaryStatistics instances containing statistics describing the values in each of the bins. The ArrayList is indexed on the bin number. List of bin statistics.



getNextValue
public double getNextValue() throws IllegalStateException(Code)
Generates a random value from this distribution. the random value.
throws:
  IllegalStateException - if the distribution has not been loaded



getSampleStats
public StatisticalSummary getSampleStats()(Code)
Returns a StatisticalSummary describing this distribution. Preconditions:
  • the distribution must be loaded before invoking this method
the sample statistics
throws:
  IllegalStateException - if the distribution has not been loaded



getUpperBounds
public double[] getUpperBounds()(Code)
Returns (a fresh copy of) the array of upper bounds for the bins. Bins are:
[min,upperBounds[0]],(upperBounds[0],upperBounds[1]],..., (upperBounds[binCount-1],max] array of bin upper bounds



isLoaded
public boolean isLoaded()(Code)
Property indicating whether or not the distribution has been loaded. true if the distribution has been loaded



load
public void load(double[] in)(Code)
Computes the empirical distribution from the provided array of numbers.
Parameters:
  in - the input data array



load
public void load(URL url) throws IOException(Code)
Computes the empirical distribution using data read from a URL.
Parameters:
  url - url of the input file
throws:
  IOException - if an IO error occurs



load
public void load(File file) throws IOException(Code)
Computes the empirical distribution from the input file.
Parameters:
  file - the input file
throws:
  IOException - if an IO error occurs



Methods inherited from java.lang.Object
native protected Object clone() throws CloneNotSupportedException(Code)(Java Doc)
public boolean equals(Object obj)(Code)(Java Doc)
protected void finalize() throws Throwable(Code)(Java Doc)
final native public Class getClass()(Code)(Java Doc)
native public int hashCode()(Code)(Java Doc)
final native public void notify()(Code)(Java Doc)
final native public void notifyAll()(Code)(Java Doc)
public String toString()(Code)(Java Doc)
final native public void wait(long timeout) throws InterruptedException(Code)(Java Doc)
final public void wait(long timeout, int nanos) throws InterruptedException(Code)(Java Doc)
final public void wait() throws InterruptedException(Code)(Java Doc)

www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.