Source Code Cross Referenced for Variance.java in  » Science » Apache-commons-math-1.1 » org » apache » commons » math » stat » descriptive » moment » Java Source Code / Java DocumentationJava Source Code and Java Documentation

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » Science » Apache commons math 1.1 » org.apache.commons.math.stat.descriptive.moment 
Source Cross Referenced  Class Diagram Java Document (Java Doc) 


001:        /*
002:         * Copyright 2003-2004 The Apache Software Foundation.
003:         *
004:         * Licensed under the Apache License, Version 2.0 (the "License");
005:         * you may not use this file except in compliance with the License.
006:         * You may obtain a copy of the License at
007:         *
008:         *      http://www.apache.org/licenses/LICENSE-2.0
009:         *
010:         * Unless required by applicable law or agreed to in writing, software
011:         * distributed under the License is distributed on an "AS IS" BASIS,
012:         * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
013:         * See the License for the specific language governing permissions and
014:         * limitations under the License.
015:         */
016:        package org.apache.commons.math.stat.descriptive.moment;
017:
018:        import java.io.Serializable;
019:
020:        import org.apache.commons.math.stat.descriptive.AbstractStorelessUnivariateStatistic;
021:
022:        /**
023:         * Computes the variance of the available values.   By default, the unbiased
024:         * "sample variance" definitional formula is used: 
025:         * <p>
026:         * variance = sum((x_i - mean)^2) / (n - 1)
027:         * <p>
028:         * where mean is the {@link Mean} and <code>n</code> is the number
029:         * of sample observations.  
030:         * <p>
031:         * The definitional formula does not have good numerical properties, so
032:         * this implementation uses updating formulas based on West's algorithm
033:         * as described in <a href="http://doi.acm.org/10.1145/359146.359152">
034:         * Chan, T. F. andJ. G. Lewis 1979, <i>Communications of the ACM</i>,
035:         * vol. 22 no. 9, pp. 526-531.</a>.
036:         * <p>
037:         * The "population variance"  ( sum((x_i - mean)^2) / n ) can also
038:         * be computed using this statistic.  The <code>isBiasCorrected</code>
039:         * property determines whether the "population" or "sample" value is
040:         * returned by the <code>evaluate</code> and <code>getResult</code> methods.
041:         * To compute population variances, set this property to <code>false.</code>
042:         *
043:         * <strong>Note that this implementation is not synchronized.</strong> If 
044:         * multiple threads access an instance of this class concurrently, and at least
045:         * one of the threads invokes the <code>increment()</code> or 
046:         * <code>clear()</code> method, it must be synchronized externally.
047:         * 
048:         * @version $Revision: 348519 $ $Date: 2005-11-23 12:12:18 -0700 (Wed, 23 Nov 2005) $
049:         */
050:        public class Variance extends AbstractStorelessUnivariateStatistic
051:                implements  Serializable {
052:
053:            /** Serializable version identifier */
054:            private static final long serialVersionUID = -9111962718267217978L;
055:
056:            /** SecondMoment is used in incremental calculation of Variance*/
057:            protected SecondMoment moment = null;
058:
059:            /**
060:             * Boolean test to determine if this Variance should also increment
061:             * the second moment, this evaluates to false when this Variance is
062:             * constructed with an external SecondMoment as a parameter.
063:             */
064:            protected boolean incMoment = true;
065:
066:            /**
067:             * Determines whether or not bias correction is applied when computing the
068:             * value of the statisic.  True means that bias is corrected.  See 
069:             * {@link Variance} for details on the formula.
070:             */
071:            private boolean isBiasCorrected = true;
072:
073:            /**
074:             * Constructs a Variance with default (true) <code>isBiasCorrected</code>
075:             * property.
076:             */
077:            public Variance() {
078:                moment = new SecondMoment();
079:            }
080:
081:            /**
082:             * Constructs a Variance based on an external second moment.
083:             * 
084:             * @param m2 the SecondMoment (Thrid or Fourth moments work
085:             * here as well.)
086:             */
087:            public Variance(final SecondMoment m2) {
088:                incMoment = false;
089:                this .moment = m2;
090:            }
091:
092:            /**
093:             * Constructs a Variance with the specified <code>isBiasCorrected</code>
094:             * property
095:             * 
096:             * @param isBiasCorrected  setting for bias correction - true means
097:             * bias will be corrected and is equivalent to using the argumentless
098:             * constructor
099:             */
100:            public Variance(boolean isBiasCorrected) {
101:                moment = new SecondMoment();
102:                this .isBiasCorrected = isBiasCorrected;
103:            }
104:
105:            /**
106:             * Constructs a Variance with the specified <code>isBiasCorrected</code>
107:             * property and the supplied external second moment.
108:             * 
109:             * @param isBiasCorrected  setting for bias correction - true means
110:             * bias will be corrected
111:             * @param m2 the SecondMoment (Thrid or Fourth moments work
112:             * here as well.)
113:             */
114:            public Variance(boolean isBiasCorrected, SecondMoment m2) {
115:                incMoment = false;
116:                this .moment = m2;
117:                this .isBiasCorrected = isBiasCorrected;
118:            }
119:
120:            /**
121:             * @see org.apache.commons.math.stat.descriptive.StorelessUnivariateStatistic#increment(double)
122:             */
123:            public void increment(final double d) {
124:                if (incMoment) {
125:                    moment.increment(d);
126:                }
127:            }
128:
129:            /**
130:             * @see org.apache.commons.math.stat.descriptive.StorelessUnivariateStatistic#getResult()
131:             */
132:            public double getResult() {
133:                if (moment.n == 0) {
134:                    return Double.NaN;
135:                } else if (moment.n == 1) {
136:                    return 0d;
137:                } else {
138:                    if (isBiasCorrected) {
139:                        return moment.m2 / ((double) moment.n - 1d);
140:                    } else {
141:                        return moment.m2 / ((double) moment.n);
142:                    }
143:                }
144:            }
145:
146:            /**
147:             * @see org.apache.commons.math.stat.descriptive.StorelessUnivariateStatistic#getN()
148:             */
149:            public long getN() {
150:                return moment.getN();
151:            }
152:
153:            /**
154:             * @see org.apache.commons.math.stat.descriptive.StorelessUnivariateStatistic#clear()
155:             */
156:            public void clear() {
157:                if (incMoment) {
158:                    moment.clear();
159:                }
160:            }
161:
162:            /**
163:             * Returns the variance of the entries in the input array, or 
164:             * <code>Double.NaN</code> if the array is empty.
165:             * <p>
166:             * See {@link Variance} for details on the computing algorithm.
167:             * <p>
168:             * Returns 0 for a single-value (i.e. length = 1) sample.
169:             * <p>
170:             * Throws <code>IllegalArgumentException</code> if the array is null.
171:             * <p>
172:             * Does not change the internal state of the statistic.
173:             * 
174:             * @param values the input array
175:             * @return the variance of the values or Double.NaN if length = 0
176:             * @throws IllegalArgumentException if the array is null
177:             */
178:            public double evaluate(final double[] values) {
179:                if (values == null) {
180:                    throw new IllegalArgumentException(
181:                            "input values array is null");
182:                }
183:                return evaluate(values, 0, values.length);
184:            }
185:
186:            /**
187:             * Returns the variance of the entries in the specified portion of
188:             * the input array, or <code>Double.NaN</code> if the designated subarray
189:             * is empty.
190:             * <p>
191:             * See {@link Variance} for details on the computing algorithm.
192:             * <p>
193:             * Returns 0 for a single-value (i.e. length = 1) sample.
194:             * <p>
195:             * Does not change the internal state of the statistic.
196:             * <p>
197:             * Throws <code>IllegalArgumentException</code> if the array is null.
198:             * 
199:             * @param values the input array
200:             * @param begin index of the first array element to include
201:             * @param length the number of elements to include
202:             * @return the variance of the values or Double.NaN if length = 0
203:             * @throws IllegalArgumentException if the array is null or the array index
204:             *  parameters are not valid
205:             */
206:            public double evaluate(final double[] values, final int begin,
207:                    final int length) {
208:
209:                double var = Double.NaN;
210:
211:                if (test(values, begin, length)) {
212:                    clear();
213:                    if (length == 1) {
214:                        var = 0.0;
215:                    } else if (length > 1) {
216:                        Mean mean = new Mean();
217:                        double m = mean.evaluate(values, begin, length);
218:                        var = evaluate(values, m, begin, length);
219:                    }
220:                }
221:                return var;
222:            }
223:
224:            /**
225:             * Returns the variance of the entries in the specified portion of
226:             * the input array, using the precomputed mean value.  Returns 
227:             * <code>Double.NaN</code> if the designated subarray is empty.
228:             * <p>
229:             * See {@link Variance} for details on the computing algorithm.
230:             * <p>
231:             * The formula used assumes that the supplied mean value is the arithmetic
232:             * mean of the sample data, not a known population parameter.  This method
233:             * is supplied only to save computation when the mean has already been
234:             * computed.
235:             * <p>
236:             * Returns 0 for a single-value (i.e. length = 1) sample.
237:             * <p>
238:             * Throws <code>IllegalArgumentException</code> if the array is null.
239:             * <p>
240:             * Does not change the internal state of the statistic.
241:             * 
242:             * @param values the input array
243:             * @param mean the precomputed mean value
244:             * @param begin index of the first array element to include
245:             * @param length the number of elements to include
246:             * @return the variance of the values or Double.NaN if length = 0
247:             * @throws IllegalArgumentException if the array is null or the array index
248:             *  parameters are not valid
249:             */
250:            public double evaluate(final double[] values, final double mean,
251:                    final int begin, final int length) {
252:
253:                double var = Double.NaN;
254:
255:                if (test(values, begin, length)) {
256:                    if (length == 1) {
257:                        var = 0.0;
258:                    } else if (length > 1) {
259:                        double accum = 0.0;
260:                        double accum2 = 0.0;
261:                        for (int i = begin; i < begin + length; i++) {
262:                            accum += Math.pow((values[i] - mean), 2.0);
263:                            accum2 += (values[i] - mean);
264:                        }
265:                        if (isBiasCorrected) {
266:                            var = (accum - (Math.pow(accum2, 2) / ((double) length)))
267:                                    / (double) (length - 1);
268:                        } else {
269:                            var = (accum - (Math.pow(accum2, 2) / ((double) length)))
270:                                    / (double) length;
271:                        }
272:                    }
273:                }
274:                return var;
275:            }
276:
277:            /**
278:             * Returns the variance of the entries in the input array, using the
279:             * precomputed mean value.  Returns <code>Double.NaN</code> if the array
280:             * is empty.
281:             * <p>
282:             * See {@link Variance} for details on the computing algorithm.
283:             * <p>
284:             * If <code>isBiasCorrected</code> is <code>true</code> the formula used
285:             * assumes that the supplied mean value is the arithmetic mean of the
286:             * sample data, not a known population parameter.  If the mean is a known
287:             * population parameter, or if the "population" version of the variance is
288:             * desired, set <code>isBiasCorrected</code> to <code>false</code> before
289:             * invoking this method.
290:             * <p>
291:             * Returns 0 for a single-value (i.e. length = 1) sample.
292:             * <p>
293:             * Throws <code>IllegalArgumentException</code> if the array is null.
294:             * <p>
295:             * Does not change the internal state of the statistic.
296:             * 
297:             * @param values the input array
298:             * @param mean the precomputed mean value
299:             * @return the variance of the values or Double.NaN if the array is empty
300:             * @throws IllegalArgumentException if the array is null
301:             */
302:            public double evaluate(final double[] values, final double mean) {
303:                return evaluate(values, mean, 0, values.length);
304:            }
305:
306:            /**
307:             * @return Returns the isBiasCorrected.
308:             */
309:            public boolean isBiasCorrected() {
310:                return isBiasCorrected;
311:            }
312:
313:            /**
314:             * @param isBiasCorrected The isBiasCorrected to set.
315:             */
316:            public void setBiasCorrected(boolean isBiasCorrected) {
317:                this.isBiasCorrected = isBiasCorrected;
318:            }
319:
320:        }
w___w___w_.__j_a__v___a__2__s___.c__o__m | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.