Java Doc for Variance.java in  » Science » Apache-commons-math-1.1 » org » apache » commons » math » stat » descriptive » moment » Java Source Code / Java DocumentationJava Source Code and Java Documentation

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » Science » Apache commons math 1.1 » org.apache.commons.math.stat.descriptive.moment 
Source Cross Reference  Class Diagram Java Document (Java Doc) 


org.apache.commons.math.stat.descriptive.AbstractStorelessUnivariateStatistic
   org.apache.commons.math.stat.descriptive.moment.Variance

Variance
public class Variance extends AbstractStorelessUnivariateStatistic implements Serializable(Code)
Computes the variance of the available values. By default, the unbiased "sample variance" definitional formula is used:

variance = sum((x_i - mean)^2) / (n - 1)

where mean is the Mean and n is the number of sample observations.

The definitional formula does not have good numerical properties, so this implementation uses updating formulas based on West's algorithm as described in Chan, T. F. andJ. G. Lewis 1979, Communications of the ACM, vol. 22 no. 9, pp. 526-531..

The "population variance" ( sum((x_i - mean)^2) / n ) can also be computed using this statistic. The isBiasCorrected property determines whether the "population" or "sample" value is returned by the evaluate and getResult methods. To compute population variances, set this property to false. Note that this implementation is not synchronized. If multiple threads access an instance of this class concurrently, and at least one of the threads invokes the increment() or clear() method, it must be synchronized externally.
version:
   $Revision: 348519 $ $Date: 2005-11-23 12:12:18 -0700 (Wed, 23 Nov 2005) $



Field Summary
protected  booleanincMoment
     Boolean test to determine if this Variance should also increment the second moment, this evaluates to false when this Variance is constructed with an external SecondMoment as a parameter.
protected  SecondMomentmoment
    

Constructor Summary
public  Variance()
     Constructs a Variance with default (true) isBiasCorrected property.
public  Variance(SecondMoment m2)
     Constructs a Variance based on an external second moment.
public  Variance(boolean isBiasCorrected)
    
public  Variance(boolean isBiasCorrected, SecondMoment m2)
     Constructs a Variance with the specified isBiasCorrected property and the supplied external second moment.

Method Summary
public  voidclear()
    
public  doubleevaluate(double[] values)
     Returns the variance of the entries in the input array, or Double.NaN if the array is empty.

See Variance for details on the computing algorithm.

Returns 0 for a single-value (i.e.

public  doubleevaluate(double[] values, int begin, int length)
     Returns the variance of the entries in the specified portion of the input array, or Double.NaN if the designated subarray is empty.

See Variance for details on the computing algorithm.

Returns 0 for a single-value (i.e.

public  doubleevaluate(double[] values, double mean, int begin, int length)
     Returns the variance of the entries in the specified portion of the input array, using the precomputed mean value.
public  doubleevaluate(double[] values, double mean)
     Returns the variance of the entries in the input array, using the precomputed mean value.
public  longgetN()
    
public  doublegetResult()
    
public  voidincrement(double d)
    
public  booleanisBiasCorrected()
    
public  voidsetBiasCorrected(boolean isBiasCorrected)
    

Field Detail
incMoment
protected boolean incMoment(Code)
Boolean test to determine if this Variance should also increment the second moment, this evaluates to false when this Variance is constructed with an external SecondMoment as a parameter.



moment
protected SecondMoment moment(Code)
SecondMoment is used in incremental calculation of Variance




Constructor Detail
Variance
public Variance()(Code)
Constructs a Variance with default (true) isBiasCorrected property.



Variance
public Variance(SecondMoment m2)(Code)
Constructs a Variance based on an external second moment.
Parameters:
  m2 - the SecondMoment (Thrid or Fourth moments workhere as well.)



Variance
public Variance(boolean isBiasCorrected)(Code)
Constructs a Variance with the specified isBiasCorrected property
Parameters:
  isBiasCorrected - setting for bias correction - true meansbias will be corrected and is equivalent to using the argumentlessconstructor



Variance
public Variance(boolean isBiasCorrected, SecondMoment m2)(Code)
Constructs a Variance with the specified isBiasCorrected property and the supplied external second moment.
Parameters:
  isBiasCorrected - setting for bias correction - true meansbias will be corrected
Parameters:
  m2 - the SecondMoment (Thrid or Fourth moments workhere as well.)




Method Detail
clear
public void clear()(Code)

See Also:   org.apache.commons.math.stat.descriptive.StorelessUnivariateStatistic.clear



evaluate
public double evaluate(double[] values)(Code)
Returns the variance of the entries in the input array, or Double.NaN if the array is empty.

See Variance for details on the computing algorithm.

Returns 0 for a single-value (i.e. length = 1) sample.

Throws IllegalArgumentException if the array is null.

Does not change the internal state of the statistic.
Parameters:
  values - the input array the variance of the values or Double.NaN if length = 0
throws:
  IllegalArgumentException - if the array is null




evaluate
public double evaluate(double[] values, int begin, int length)(Code)
Returns the variance of the entries in the specified portion of the input array, or Double.NaN if the designated subarray is empty.

See Variance for details on the computing algorithm.

Returns 0 for a single-value (i.e. length = 1) sample.

Does not change the internal state of the statistic.

Throws IllegalArgumentException if the array is null.
Parameters:
  values - the input array
Parameters:
  begin - index of the first array element to include
Parameters:
  length - the number of elements to include the variance of the values or Double.NaN if length = 0
throws:
  IllegalArgumentException - if the array is null or the array indexparameters are not valid




evaluate
public double evaluate(double[] values, double mean, int begin, int length)(Code)
Returns the variance of the entries in the specified portion of the input array, using the precomputed mean value. Returns Double.NaN if the designated subarray is empty.

See Variance for details on the computing algorithm.

The formula used assumes that the supplied mean value is the arithmetic mean of the sample data, not a known population parameter. This method is supplied only to save computation when the mean has already been computed.

Returns 0 for a single-value (i.e. length = 1) sample.

Throws IllegalArgumentException if the array is null.

Does not change the internal state of the statistic.
Parameters:
  values - the input array
Parameters:
  mean - the precomputed mean value
Parameters:
  begin - index of the first array element to include
Parameters:
  length - the number of elements to include the variance of the values or Double.NaN if length = 0
throws:
  IllegalArgumentException - if the array is null or the array indexparameters are not valid




evaluate
public double evaluate(double[] values, double mean)(Code)
Returns the variance of the entries in the input array, using the precomputed mean value. Returns Double.NaN if the array is empty.

See Variance for details on the computing algorithm.

If isBiasCorrected is true the formula used assumes that the supplied mean value is the arithmetic mean of the sample data, not a known population parameter. If the mean is a known population parameter, or if the "population" version of the variance is desired, set isBiasCorrected to false before invoking this method.

Returns 0 for a single-value (i.e. length = 1) sample.

Throws IllegalArgumentException if the array is null.

Does not change the internal state of the statistic.
Parameters:
  values - the input array
Parameters:
  mean - the precomputed mean value the variance of the values or Double.NaN if the array is empty
throws:
  IllegalArgumentException - if the array is null




getN
public long getN()(Code)

See Also:   org.apache.commons.math.stat.descriptive.StorelessUnivariateStatistic.getN



getResult
public double getResult()(Code)

See Also:   org.apache.commons.math.stat.descriptive.StorelessUnivariateStatistic.getResult



increment
public void increment(double d)(Code)

See Also:   org.apache.commons.math.stat.descriptive.StorelessUnivariateStatistic.increment(double)



isBiasCorrected
public boolean isBiasCorrected()(Code)
Returns the isBiasCorrected.



setBiasCorrected
public void setBiasCorrected(boolean isBiasCorrected)(Code)

Parameters:
  isBiasCorrected - The isBiasCorrected to set.



Methods inherited from org.apache.commons.math.stat.descriptive.AbstractStorelessUnivariateStatistic
abstract public void clear()(Code)(Java Doc)
public boolean equals(Object object)(Code)(Java Doc)
public double evaluate(double[] values)(Code)(Java Doc)
public double evaluate(double[] values, int begin, int length)(Code)(Java Doc)
abstract public double getResult()(Code)(Java Doc)
public int hashCode()(Code)(Java Doc)
abstract public void increment(double d)(Code)(Java Doc)
public void incrementAll(double[] values)(Code)(Java Doc)
public void incrementAll(double[] values, int begin, int length)(Code)(Java Doc)

w___ww___.__j__a___v__a_2_s__.___co_m__ | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.