weka.classifiers.mi

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » Science » weka » weka.classifiers.mi 
weka.classifiers.mi
Java Source File NameTypeComment
CitationKNN.javaClass Modified version of the Citation kNN multi instance classifier.

For more information see:

Jun Wang, Zucker, Jean-Daniel: Solving Multiple-Instance Problem: A Lazy Learning Approach.
MDD.javaClass Modified Diverse Density algorithm, with collective assumption.

More information about DD:

Oded Maron (1998).
MIBoost.javaClass MI AdaBoost method, considers the geometric mean of posterior of instances inside a bag (arithmatic mean of log-posterior) and the expectation for a bag is taken inside the loss function.

For more information about Adaboost, see:

Yoav Freund, Robert E.
MIDD.javaClass Re-implement the Diverse Density algorithm, changes the testing procedure.

Oded Maron (1998).
MIEMDD.javaClass EMDD model builds heavily upon Dietterich's Diverse Density (DD) algorithm.
It is a general framework for MI learning of converting the MI problem to a single-instance setting using EM.
MILR.javaClass Uses either standard or collective multi-instance assumption, but within linear regression.
MINND.javaClass Multiple-Instance Nearest Neighbour with Distribution learner.

It uses gradient descent to find the weight for each dimension of each exeamplar from the starting point of 1.0.
MIOptimalBall.javaClass This classifier tries to find a suitable ball in the multiple-instance space, with a certain data point in the instance space as a ball center.
MISMO.javaClass Implements John Platt's sequential minimal optimization algorithm for training a support vector classifier.

This implementation globally replaces all missing values and transforms nominal attributes into binary ones.
MISVM.javaClass Implements Stuart Andrews' mi_SVM (Maximum pattern Margin Formulation of MIL).
MIWrapper.javaClass A simple Wrapper method for applying standard propositional learners to multi-instance data.

For more information see:

E.
SimpleMI.javaClass Reduces MI data into mono-instance data.
TLD.javaClass Two-Level Distribution approach, changes the starting value of the searching algorithm, supplement the cut-off modification and check missing values.

For more information see:

Xin Xu (2003).
TLDSimple.javaClass A simpler version of TLD, mu random but sigma^2 fixed and estimated via data.

For more information see:

Xin Xu (2003).
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.