weka.filters.unsupervised.attribute

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » Science » weka » weka.filters.unsupervised.attribute 
weka.filters.unsupervised.attribute
Java Source File NameTypeComment
AbstractTimeSeries.javaClass An abstract instance filter that assumes instances form time-series data and performs some merging of attribute values in the current instance with attribute attribute values of some previous (or future) instance.
Add.javaClass An instance filter that adds a new attribute to the dataset.
AddCluster.javaClass A filter that adds a new nominal attribute representing the cluster assigned to each instance by the specified clustering algorithm.

Valid options are:

 -W <clusterer specification>
 Full class name of clusterer to use, followed
 by scheme options.
AddExpression.javaClass An instance filter that creates a new attribute by applying a mathematical expression to existing attributes.
AddID.javaClass An instance filter that adds an ID attribute to the dataset.
AddNoise.javaClass An instance filter that changes a percentage of a given attributes values.
AddValues.javaClass Adds the labels from the given list to an attribute if they are missing.
Center.javaClass Centers all numeric attributes in the given dataset to have zero mean (apart from the class attribute, if set).
ChangeDateFormat.javaClass Changes the date format used by a date attribute.
ClassAssigner.javaClass Filter that can set and unset the class index.

Valid options are:

 -D
 Turns on output of debugging information.
 -C <num|first|last|0>
 The index of the class attribute.
ClusterMembership.javaClass A filter that uses a density-based clusterer to generate cluster membership values; filtered instances are composed of these values plus the class attribute (if set in the input data).
Copy.javaClass An instance filter that copies a range of attributes in the dataset.
Discretize.javaClass An instance filter that discretizes a range of numeric attributes in the dataset into nominal attributes.
FirstOrder.javaClass This instance filter takes a range of N numeric attributes and replaces them with N-1 numeric attributes, the values of which are the difference between consecutive attribute values from the original instance.
InterquartileRange.javaClass A filter for detecting outliers and extreme values based on interquartile ranges.
KernelFilter.javaClass Converts the given set of predictor variables into a kernel matrix.
MakeIndicator.javaClass A filter that creates a new dataset with a boolean attribute replacing a nominal attribute.
MathExpression.javaClass Modify numeric attributes according to a given expression

Valid options are:

 -unset-class-temporarily
 Unsets the class index temporarily before the filter is
 applied to the data.
 (default: no)
 -E <expression>
 Specify the expression to apply.
MergeTwoValues.javaClass Merges two values of a nominal attribute into one value.
MultiInstanceToPropositional.javaClass Converts the multi-instance dataset into single instance dataset so that the Nominalize, Standardize and other type of filters or transformation can be applied to these data for the further preprocessing.
Note: the first attribute of the converted dataset is a nominal attribute and refers to the bagId.

Valid options are:

 -A <num>
 The type of weight setting for each prop.
NominalToBinary.javaClass Converts all nominal attributes into binary numeric attributes.
NominalToString.javaClass Converts a nominal attribute (i.e.
Normalize.javaClass Normalizes all numeric values in the given dataset (apart from the class attribute, if set).
NumericCleaner.javaClass A filter that 'cleanses' the numeric data from values that are too small, too big or very close to a certain value (e.g., 0) and sets these values to a pre-defined default.

Valid options are:

 -D
 Turns on output of debugging information.
 -min <double>
 The minimum threshold.
NumericToBinary.javaClass Converts all numeric attributes into binary attributes (apart from the class attribute, if set): if the value of the numeric attribute is exactly zero, the value of the new attribute will be zero.
NumericToNominal.javaClass A filter for turning numeric attributes into nominal ones.
NumericTransform.javaClass Transforms numeric attributes using a given transformation method.

Valid options are:

 -R <index1,index2-index4,...>
 Specify list of columns to transform.
Obfuscate.javaClass A simple instance filter that renames the relation, all attribute names and all nominal (and string) attribute values.
PartitionedMultiFilter.javaClass A filter that applies filters on subsets of attributes and assembles the output into a new dataset.
PKIDiscretize.javaClass Discretizes numeric attributes using equal frequency binning, where the number of bins is equal to the square root of the number of non-missing values.

For more information, see:

Ying Yang, Geoffrey I.
PotentialClassIgnorer.javaClass This filter should be extended by other unsupervised attribute filters to allow processing of the class attribute if that's required.
PropositionalToMultiInstance.javaClass Converts the propositional instance dataset into multi-instance dataset (with relational attribute).
RandomProjection.javaClass Reduces the dimensionality of the data by projecting it onto a lower dimensional subspace using a random matrix with columns of unit length (i.e.
Remove.javaClass An instance filter that removes a range of attributes from the dataset.

Valid options are:

 -R <index1,index2-index4,...>
 Specify list of columns to delete.
RemoveType.javaClass Removes attributes of a given type.

Valid options are:

 -T <nominal|numeric|string|date|relational>
 Attribute type to delete.
RemoveUseless.javaClass This filter removes attributes that do not vary at all or that vary too much.
Reorder.javaClass An instance filter that generates output with a new order of the attributes.
ReplaceMissingValues.javaClass Replaces all missing values for nominal and numeric attributes in a dataset with the modes and means from the training data.
Standardize.javaClass Standardizes all numeric attributes in the given dataset to have zero mean and unit variance (apart from the class attribute, if set).
StringToNominal.javaClass Converts a string attribute (i.e.
StringToWordVector.javaClass Converts String attributes into a set of attributes representing word occurrence (depending on the tokenizer) information from the text contained in the strings.
SwapValues.javaClass Swaps two values of a nominal attribute.
TimeSeriesDelta.javaClass An instance filter that assumes instances form time-series data and replaces attribute values in the current instance with the difference between the current value and the equivalent attribute attribute value of some previous (or future) instance.
TimeSeriesTranslate.javaClass An instance filter that assumes instances form time-series data and replaces attribute values in the current instance with the equivalent attribute values of some previous (or future) instance.
Wavelet.javaClass A filter for wavelet transformation.

For more information see:

Wikipedia (2004).
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.