RankSearch :
Uses an attribute/subset evaluator to rank all attributes. If a subset evaluator is specified, then a forward selection search is used to generate a ranked list. From the ranked list of attributes, subsets of increasing size are evaluated, ie. The best attribute, the best attribute plus the next best attribute, etc.... The best attribute set is reported. RankSearch is linear in the number of attributes if a simple attribute evaluator is used such as GainRatioAttributeEval.
Valid options are:
-A <attribute evaluator>
class name of attribute evaluator to use for ranking. Place any
evaluator options LAST on the command line following a "--".
eg.:
-A weka.attributeSelection.GainRatioAttributeEval ... -- -M
(default: weka.attributeSelection.GainRatioAttributeEval)
-S <step size>
number of attributes to be added from the
ranking in each iteration (default = 1).
-R <start point>
point in the ranking to start evaluating from.
(default = 0, ie. the head of the ranking).
Options specific to evaluator weka.attributeSelection.GainRatioAttributeEval:
-M
treat missing values as a seperate value.
author: Mark Hall (mhall@cs.waikato.ac.nz) version: $Revision: 1.17 $ |