Source Code Cross Referenced for TinyNodeImpl.java in  » XML » XPath-Saxon » net » sf » saxon » tinytree » Java Source Code / Java DocumentationJava Source Code and Java Documentation

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » XML » XPath Saxon » net.sf.saxon.tinytree 
Source Cross Referenced  Class Diagram Java Document (Java Doc) 


001:        package net.sf.saxon.tinytree;
002:
003:        import net.sf.saxon.Configuration;
004:        import net.sf.saxon.Err;
005:        import net.sf.saxon.style.StandardNames;
006:        import net.sf.saxon.event.Receiver;
007:        import net.sf.saxon.om.*;
008:        import net.sf.saxon.pattern.AnyNodeTest;
009:        import net.sf.saxon.pattern.NameTest;
010:        import net.sf.saxon.pattern.NodeTest;
011:        import net.sf.saxon.trans.DynamicError;
012:        import net.sf.saxon.trans.XPathException;
013:        import net.sf.saxon.type.SchemaType;
014:        import net.sf.saxon.type.Type;
015:        import net.sf.saxon.value.UntypedAtomicValue;
016:        import net.sf.saxon.value.Value;
017:
018:        import javax.xml.transform.SourceLocator;
019:
020:        /**
021:         * A node in a TinyTree representing an XML element, character content, or attribute.<P>
022:         * This is the top-level class in the implementation class hierarchy; it essentially contains
023:         * all those methods that can be defined using other primitive methods, without direct access
024:         * to data.
025:         * @author Michael H. Kay
026:         */
027:
028:        public abstract class TinyNodeImpl implements  NodeInfo,
029:                FingerprintedNode, SourceLocator {
030:
031:            protected TinyTree tree;
032:            protected int nodeNr;
033:            protected TinyNodeImpl parent = null;
034:
035:            /**
036:             * Chararacteristic letters to identify each type of node, indexed using the node type
037:             * values. These are used as the initial letter of the result of generate-id()
038:             */
039:
040:            public static final char[] NODE_LETTER = { 'x', 'e', 'a', 't', 'x',
041:                    'x', 'x', 'p', 'c', 'r', 'x', 'x', 'x', 'n' };
042:
043:            /**
044:             * Get the value of the item as a CharSequence. This is in some cases more efficient than
045:             * the version of the method that returns a String.
046:             */
047:
048:            public CharSequence getStringValueCS() {
049:                return getStringValue();
050:            }
051:
052:            /**
053:             * Get the type annotation of this node, if any
054:             */
055:
056:            public int getTypeAnnotation() {
057:                return -1;
058:            }
059:
060:            /**
061:             * Get the column number of the node.
062:             * The default implementation returns -1, meaning unknown
063:             */
064:
065:            public int getColumnNumber() {
066:                return -1;
067:            }
068:
069:            /**
070:             * Get the public identifier of the document entity containing this node.
071:             * The default implementation returns null, meaning unknown
072:             */
073:
074:            public String getPublicId() {
075:                return null;
076:            }
077:
078:            /**
079:             * Get the typed value of this node.
080:             * If there is no type annotation, we return the string value, as an instance
081:             * of xdt:untypedAtomic
082:             */
083:
084:            public SequenceIterator getTypedValue() throws XPathException {
085:                int annotation = getTypeAnnotation();
086:                if ((annotation & NodeInfo.IS_DTD_TYPE) != 0) {
087:                    annotation = StandardNames.XDT_UNTYPED_ATOMIC;
088:                }
089:                if (annotation == -1
090:                        || annotation == StandardNames.XDT_UNTYPED_ATOMIC
091:                        || annotation == StandardNames.XDT_UNTYPED) {
092:                    return SingletonIterator
093:                            .makeIterator(new UntypedAtomicValue(
094:                                    getStringValueCS()));
095:                } else {
096:                    SchemaType stype = getConfiguration().getSchemaType(
097:                            annotation);
098:                    if (stype == null) {
099:                        String typeName = getNamePool().getDisplayName(
100:                                annotation);
101:                        throw new DynamicError("Unknown type annotation "
102:                                + Err.wrap(typeName) + " in document instance");
103:                    } else {
104:                        return stype.getTypedValue(this );
105:                    }
106:                }
107:            }
108:
109:            /**
110:             * Get the typed value. The result of this method will always be consistent with the method
111:             * {@link net.sf.saxon.om.Item#getTypedValue()}. However, this method is often more convenient and may be
112:             * more efficient, especially in the common case where the value is expected to be a singleton.
113:             *
114:             * @return the typed value. If requireSingleton is set to true, the result will always be an
115:             *         AtomicValue. In other cases it may be a Value representing a sequence whose items are atomic
116:             *         values.
117:             * @since 8.5
118:             */
119:
120:            public Value atomize() throws XPathException {
121:                int annotation = getTypeAnnotation();
122:                if ((annotation & NodeInfo.IS_DTD_TYPE) != 0) {
123:                    annotation = StandardNames.XDT_UNTYPED_ATOMIC;
124:                }
125:                if (annotation == -1
126:                        || annotation == StandardNames.XDT_UNTYPED_ATOMIC
127:                        || annotation == StandardNames.XDT_UNTYPED) {
128:                    return new UntypedAtomicValue(getStringValueCS());
129:                } else {
130:                    SchemaType stype = getConfiguration().getSchemaType(
131:                            annotation);
132:                    if (stype == null) {
133:                        String typeName = getNamePool().getDisplayName(
134:                                annotation);
135:                        throw new DynamicError("Unknown type annotation "
136:                                + Err.wrap(typeName) + " in document instance");
137:                    } else {
138:                        return stype.atomize(this );
139:                    }
140:                }
141:            }
142:
143:            /**
144:             * Set the system id of this node. <br />
145:             * This method is present to ensure that
146:             * the class implements the javax.xml.transform.Source interface, so a node can
147:             * be used as the source of a transformation.
148:             */
149:
150:            public void setSystemId(String uri) {
151:                short type = tree.nodeKind[nodeNr];
152:                if (type == Type.ATTRIBUTE || type == Type.NAMESPACE) {
153:                    getParent().setSystemId(uri);
154:                } else {
155:                    tree.setSystemId(nodeNr, uri);
156:                }
157:            }
158:
159:            /**
160:             * Set the parent of this node. Providing this information is useful,
161:             * if it is known, because otherwise getParent() has to search backwards
162:             * through the document.
163:             */
164:
165:            protected void setParentNode(TinyNodeImpl parent) {
166:                this .parent = parent;
167:            }
168:
169:            /**
170:             * Determine whether this is the same node as another node
171:             * @return true if this Node object and the supplied Node object represent the
172:             * same node in the tree.
173:             */
174:
175:            public boolean isSameNodeInfo(NodeInfo other) {
176:                if (this  == other)
177:                    return true;
178:                if (!(other instanceof  TinyNodeImpl))
179:                    return false;
180:                if (this .tree != ((TinyNodeImpl) other).tree)
181:                    return false;
182:                if (this .nodeNr != ((TinyNodeImpl) other).nodeNr)
183:                    return false;
184:                if (this .getNodeKind() != other.getNodeKind())
185:                    return false;
186:                return true;
187:            }
188:
189:            /**
190:             * Get the system ID for the entity containing the node.
191:             */
192:
193:            public String getSystemId() {
194:                return tree.getSystemId(nodeNr);
195:            }
196:
197:            /**
198:             * Get the base URI for the node. Default implementation for child nodes gets
199:             * the base URI of the parent node.
200:             */
201:
202:            public String getBaseURI() {
203:                return (getParent()).getBaseURI();
204:            }
205:
206:            /**
207:             * Get the line number of the node within its source document entity
208:             */
209:
210:            public int getLineNumber() {
211:                return tree.getLineNumber(nodeNr);
212:            }
213:
214:            /**
215:             * Get the node sequence number (in document order). Sequence numbers are monotonic but not
216:             * consecutive. The sequence number must be unique within the document (not, as in
217:             * previous releases, within the whole document collection).
218:             * For document nodes, elements, text nodes, comment nodes, and PIs, the sequence number
219:             * is a long with the sequential node number in the top half and zero in the bottom half.
220:             * The bottom half is used only for attributes and namespace.
221:             */
222:
223:            protected long getSequenceNumber() {
224:                return (long) nodeNr << 32;
225:            }
226:
227:            /**
228:             * Determine the relative position of this node and another node, in document order.
229:             * The other node will always be in the same document.
230:             * @param other The other node, whose position is to be compared with this node
231:             * @return -1 if this node precedes the other node, +1 if it follows the other
232:             * node, or 0 if they are the same node. (In this case, isSameNode() will always
233:             * return true, and the two nodes will produce the same result for generateId())
234:             */
235:
236:            public final int compareOrder(NodeInfo other) {
237:                long a = getSequenceNumber();
238:                if (other instanceof  TinyNodeImpl) {
239:                    long b = ((TinyNodeImpl) other).getSequenceNumber();
240:                    if (a < b)
241:                        return -1;
242:                    if (a > b)
243:                        return +1;
244:                    return 0;
245:                } else {
246:                    // it must be a namespace node
247:                    return 0 - other.compareOrder(this );
248:                }
249:            }
250:
251:            /**
252:             * Get the fingerprint of the node, used for matching names
253:             */
254:
255:            public int getFingerprint() {
256:                int nc = getNameCode();
257:                if (nc == -1)
258:                    return -1;
259:                return nc & 0xfffff;
260:            }
261:
262:            /**
263:             * Get the name code of the node, used for matching names
264:             */
265:
266:            public int getNameCode() {
267:                // overridden for attributes and namespace nodes.
268:                return tree.nameCode[nodeNr];
269:            }
270:
271:            /**
272:             * Get the prefix part of the name of this node. This is the name before the ":" if any.
273:             * @return the prefix part of the name. For an unnamed node, return "".
274:             */
275:
276:            public String getPrefix() {
277:                int code = tree.nameCode[nodeNr];
278:                if (code < 0)
279:                    return "";
280:                if ((code >> 20 & 0xff) == 0)
281:                    return "";
282:                return tree.getNamePool().getPrefix(code);
283:            }
284:
285:            /**
286:             * Get the URI part of the name of this node. This is the URI corresponding to the
287:             * prefix, or the URI of the default namespace if appropriate.
288:             * @return The URI of the namespace of this node. For an unnamed node, or for
289:             * an element or attribute in the default namespace, return an empty string.
290:             */
291:
292:            public String getURI() {
293:                int code = tree.nameCode[nodeNr];
294:                if (code < 0)
295:                    return "";
296:                return tree.getNamePool().getURI(code);
297:            }
298:
299:            /**
300:             * Get the display name of this node (a lexical QName). For elements and attributes this is [prefix:]localname.
301:             * The original prefix is retained. For unnamed nodes, the result is an empty string.
302:             * @return The display name of this node.
303:             * For a node with no name, return an empty string.
304:             */
305:
306:            public String getDisplayName() {
307:                int code = tree.nameCode[nodeNr];
308:                if (code < 0)
309:                    return "";
310:                return tree.getNamePool().getDisplayName(code);
311:            }
312:
313:            /**
314:             * Get the local part of the name of this node.
315:             * @return The local name of this node.
316:             * For a node with no name, return "".
317:             */
318:
319:            public String getLocalPart() {
320:                int code = tree.nameCode[nodeNr];
321:                if (code < 0)
322:                    return "";
323:                return tree.getNamePool().getLocalName(code);
324:            }
325:
326:            /**
327:             * Return an iterator over all the nodes reached by the given axis from this node
328:             * @param axisNumber Identifies the required axis, eg. Axis.CHILD or Axis.PARENT
329:             * @return a AxisIteratorImpl that scans the nodes reached by the axis in turn.
330:             */
331:
332:            public AxisIterator iterateAxis(byte axisNumber) {
333:                // fast path for child axis
334:                if (axisNumber == Axis.CHILD) {
335:                    if (hasChildNodes()) {
336:                        return new SiblingEnumeration(tree, this , null, true);
337:                    } else {
338:                        return EmptyIterator.getInstance();
339:                    }
340:                } else {
341:                    return iterateAxis(axisNumber, AnyNodeTest.getInstance());
342:                }
343:            }
344:
345:            /**
346:             * Return an iterator over the nodes reached by the given axis from this node
347:             * @param axisNumber Identifies the required axis, eg. Axis.CHILD or Axis.PARENT
348:             * @param nodeTest A pattern to be matched by the returned nodes.
349:             * @return a AxisIteratorImpl that scans the nodes reached by the axis in turn.
350:             */
351:
352:            public AxisIterator iterateAxis(byte axisNumber, NodeTest nodeTest) {
353:
354:                int type = getNodeKind();
355:                switch (axisNumber) {
356:                case Axis.ANCESTOR:
357:                    return new AncestorEnumeration(this , nodeTest, false);
358:
359:                case Axis.ANCESTOR_OR_SELF:
360:                    return new AncestorEnumeration(this , nodeTest, true);
361:
362:                case Axis.ATTRIBUTE:
363:                    if (type != Type.ELEMENT) {
364:                        return EmptyIterator.getInstance();
365:                    }
366:                    if (tree.alpha[nodeNr] < 0) {
367:                        return EmptyIterator.getInstance();
368:                    }
369:                    return new AttributeEnumeration(tree, nodeNr, nodeTest);
370:
371:                case Axis.CHILD:
372:                    if (hasChildNodes()) {
373:                        return new SiblingEnumeration(tree, this , nodeTest,
374:                                true);
375:                    } else {
376:                        return EmptyIterator.getInstance();
377:                    }
378:
379:                case Axis.DESCENDANT:
380:                    if (type == Type.DOCUMENT && nodeTest instanceof  NameTest
381:                            && nodeTest.getPrimitiveType() == Type.ELEMENT) {
382:                        return ((TinyDocumentImpl) this )
383:                                .getAllElements(nodeTest.getFingerprint());
384:                    } else if (hasChildNodes()) {
385:                        return new DescendantEnumeration(tree, this , nodeTest,
386:                                false);
387:                    } else {
388:                        return EmptyIterator.getInstance();
389:                    }
390:
391:                case Axis.DESCENDANT_OR_SELF:
392:                    if (hasChildNodes()) {
393:                        return new DescendantEnumeration(tree, this , nodeTest,
394:                                true);
395:                    } else {
396:                        if (nodeTest.matches(this )) {
397:                            return SingletonIterator.makeIterator(this );
398:                        } else {
399:                            return EmptyIterator.getInstance();
400:                        }
401:                    }
402:
403:                case Axis.FOLLOWING:
404:                    if (type == Type.ATTRIBUTE || type == Type.NAMESPACE) {
405:                        return new FollowingEnumeration(tree,
406:                                (TinyNodeImpl) getParent(), nodeTest, true);
407:                    } else if (tree.depth[nodeNr] == 0) {
408:                        return EmptyIterator.getInstance();
409:                    } else {
410:                        return new FollowingEnumeration(tree, this , nodeTest,
411:                                false);
412:                    }
413:
414:                case Axis.FOLLOWING_SIBLING:
415:                    if (type == Type.ATTRIBUTE || type == Type.NAMESPACE
416:                            || tree.depth[nodeNr] == 0) {
417:                        return EmptyIterator.getInstance();
418:                    } else {
419:                        return new SiblingEnumeration(tree, this , nodeTest,
420:                                false);
421:                    }
422:
423:                case Axis.NAMESPACE:
424:                    if (type != Type.ELEMENT) {
425:                        return EmptyIterator.getInstance();
426:                    }
427:                    return new NamespaceIterator(this , nodeTest);
428:
429:                case Axis.PARENT:
430:                    NodeInfo parent = getParent();
431:                    if (parent == null)
432:                        return EmptyIterator.getInstance();
433:                    if (nodeTest.matches(parent)) {
434:                        return SingletonIterator.makeIterator(parent);
435:                    }
436:                    return EmptyIterator.getInstance();
437:
438:                case Axis.PRECEDING:
439:                    if (type == Type.ATTRIBUTE || type == Type.NAMESPACE) {
440:                        return new PrecedingEnumeration(tree,
441:                                (TinyNodeImpl) getParent(), nodeTest, false);
442:                    } else if (tree.depth[nodeNr] == 0) {
443:                        return EmptyIterator.getInstance();
444:                    } else {
445:                        return new PrecedingEnumeration(tree, this , nodeTest,
446:                                false);
447:                    }
448:
449:                case Axis.PRECEDING_SIBLING:
450:                    if (type == Type.ATTRIBUTE || type == Type.NAMESPACE
451:                            || tree.depth[nodeNr] == 0) {
452:                        return EmptyIterator.getInstance();
453:                    } else {
454:                        return new PrecedingSiblingEnumeration(tree, this ,
455:                                nodeTest);
456:                    }
457:
458:                case Axis.SELF:
459:                    if (nodeTest.matches(this )) {
460:                        return SingletonIterator.makeIterator(this );
461:                    }
462:                    return EmptyIterator.getInstance();
463:
464:                case Axis.PRECEDING_OR_ANCESTOR:
465:                    if (type == Type.DOCUMENT) {
466:                        return EmptyIterator.getInstance();
467:                    } else if (type == Type.ATTRIBUTE || type == Type.NAMESPACE) {
468:                        // See test numb32.
469:                        TinyNodeImpl el = (TinyNodeImpl) getParent();
470:                        return new PrependIterator(el,
471:                                new PrecedingEnumeration(tree, el, nodeTest,
472:                                        true));
473:                    } else {
474:                        return new PrecedingEnumeration(tree, this , nodeTest,
475:                                true);
476:                    }
477:
478:                default:
479:                    throw new IllegalArgumentException("Unknown axis number "
480:                            + axisNumber);
481:                }
482:            }
483:
484:            /**
485:             * Find the parent node of this node.
486:             * @return The Node object describing the containing element or root node.
487:             */
488:
489:            public NodeInfo getParent() {
490:                if (parent != null) {
491:                    return parent;
492:                }
493:                int p = getParentNodeNr(tree, nodeNr);
494:                if (p == -1) {
495:                    parent = null;
496:                } else {
497:                    parent = tree.getNode(p);
498:                }
499:                return parent;
500:            }
501:
502:            /**
503:             * Static method to get the parent of a given node, without instantiating the node as an object.
504:             * The starting node is any node other than an attribute or namespace node.
505:             * @param tree the tree containing the starting node
506:             * @param nodeNr the node number of the starting node within the tree
507:             * @return the node number of the parent node, or -1 if there is no parent.
508:             */
509:
510:            static final int getParentNodeNr(TinyTree tree, int nodeNr) {
511:
512:                if (tree.depth[nodeNr] == 0) {
513:                    return -1;
514:                }
515:
516:                // follow the next-sibling pointers until we reach either a next sibling pointer that
517:                // points backwards, or a parent-pointer pseudo-node
518:                int p = tree.next[nodeNr];
519:                while (p > nodeNr) {
520:                    if (tree.nodeKind[p] == Type.PARENT_POINTER) {
521:                        return tree.alpha[p];
522:                    }
523:                    p = tree.next[p];
524:                }
525:                return p;
526:            }
527:
528:            /**
529:             * Determine whether the node has any children.
530:             * @return <code>true</code> if this node has any attributes,
531:             *   <code>false</code> otherwise.
532:             */
533:
534:            public boolean hasChildNodes() {
535:                // overridden in TinyParentNodeImpl
536:                return false;
537:            }
538:
539:            /**
540:             * Get the value of a given attribute of this node
541:             * @param fingerprint The fingerprint of the attribute name
542:             * @return the attribute value if it exists or null if not
543:             */
544:
545:            public String getAttributeValue(int fingerprint) {
546:                // overridden in TinyElementImpl
547:                return null;
548:            }
549:
550:            /**
551:             * Get the root node of the tree (not necessarily a document node)
552:             * @return the NodeInfo representing the root of this tree
553:             */
554:
555:            public NodeInfo getRoot() {
556:                if (tree.depth[nodeNr] == 0) {
557:                    return this ;
558:                }
559:                if (parent != null) {
560:                    return parent.getRoot();
561:                }
562:                return tree.getNode(tree.getRootNode(nodeNr));
563:            }
564:
565:            /**
566:             * Get the root (document) node
567:             * @return the DocumentInfo representing the containing document
568:             */
569:
570:            public DocumentInfo getDocumentRoot() {
571:                NodeInfo root = getRoot();
572:                if (root.getNodeKind() == Type.DOCUMENT) {
573:                    return (DocumentInfo) root;
574:                } else {
575:                    return null;
576:                }
577:            }
578:
579:            /**
580:             * Get the configuration
581:             */
582:
583:            public Configuration getConfiguration() {
584:                return tree.getConfiguration();
585:            }
586:
587:            /**
588:             * Get the NamePool for the tree containing this node
589:             * @return the NamePool
590:             */
591:
592:            public NamePool getNamePool() {
593:                return tree.getNamePool();
594:            }
595:
596:            /**
597:             * Output all namespace nodes associated with this element. Does nothing if
598:             * the node is not an element.
599:             * @param out The relevant outputter
600:             * @param includeAncestors True if namespaces declared on ancestor elements must
601:             */
602:
603:            public void sendNamespaceDeclarations(Receiver out,
604:                    boolean includeAncestors) throws XPathException {
605:            }
606:
607:            /**
608:             * Get all namespace undeclarations and undeclarations defined on this element.
609:             *
610:             * @param buffer If this is non-null, and the result array fits in this buffer, then the result
611:             *               may overwrite the contents of this array, to avoid the cost of allocating a new array on the heap.
612:             * @return An array of integers representing the namespace declarations and undeclarations present on
613:             *         this element. For a node other than an element, return null. Otherwise, the returned array is a
614:             *         sequence of namespace codes, whose meaning may be interpreted by reference to the name pool. The
615:             *         top half word of each namespace code represents the prefix, the bottom half represents the URI.
616:             *         If the bottom half is zero, then this is a namespace undeclaration rather than a declaration.
617:             *         The XML namespace is never included in the list. If the supplied array is larger than required,
618:             *         then the first unused entry will be set to -1.
619:             *         <p/>
620:             *         <p>For a node other than an element, the method returns null.</p>
621:             */
622:
623:            public int[] getDeclaredNamespaces(int[] buffer) {
624:                return null;
625:            }
626:
627:            /**
628:             * Get a character string that uniquely identifies this node
629:             * @return a string.
630:             */
631:
632:            public String generateId() {
633:                return "d" + tree.getDocumentNumber()
634:                        + NODE_LETTER[getNodeKind()] + nodeNr;
635:            }
636:
637:            /**
638:             * Get the document number of the document containing this node
639:             * (Needed when the document isn't a real node, for sorting free-standing elements)
640:             */
641:
642:            public final int getDocumentNumber() {
643:                return tree.getDocumentNumber();
644:            }
645:
646:        }
647:
648:        //
649:        // The contents of this file are subject to the Mozilla Public License Version 1.0 (the "License");
650:        // you may not use this file except in compliance with the License. You may obtain a copy of the
651:        // License at http://www.mozilla.org/MPL/
652:        //
653:        // Software distributed under the License is distributed on an "AS IS" basis,
654:        // WITHOUT WARRANTY OF ANY KIND, either express or implied.
655:        // See the License for the specific language governing rights and limitations under the License.
656:        //
657:        // The Original Code is: all this file.
658:        //
659:        // The Initial Developer of the Original Code is Michael H. Kay.
660:        //
661:        // Portions created by (your name) are Copyright (C) (your legal entity). All Rights Reserved.
662:        //
663:        // Contributor(s): none.
664:        //
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.