Fraction is a Number implementation that stores fractions accurately. : Number « Data Type « Java Tutorial

Java Tutorial
1. Language
2. Data Type
3. Operators
4. Statement Control
5. Class Definition
6. Development
7. Reflection
8. Regular Expressions
9. Collections
10. Thread
11. File
12. Generics
13. I18N
14. Swing
15. Swing Event
16. 2D Graphics
17. SWT
18. SWT 2D Graphics
19. Network
20. Database
21. Hibernate
22. JPA
23. JSP
24. JSTL
25. Servlet
26. Web Services SOA
27. EJB3
28. Spring
29. PDF
30. Email
31. J2ME
32. J2EE Application
33. XML
34. Design Pattern
35. Log
36. Security
37. Apache Common
38. Ant
39. JUnit
Java
Java Source Code / Java Documentation
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Tutorial » Data Type » Number 
2. 13. 3. Fraction is a Number implementation that stores fractions accurately.
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 
 *      http://www.apache.org/licenses/LICENSE-2.0
 
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
// Revised from commons math from Apache

import java.math.BigInteger;

/**
 * <p><code>Fraction</code> is a <code>Number</code> implementation that
 * stores fractions accurately.</p>
 *
 * <p>This class is immutable, and interoperable with most methods that accept
 * a <code>Number</code>.</p>
 *
 @author Travis Reeder
 @author Stephen Colebourne
 @author Tim O'Brien
 @author Pete Gieser
 @author C. Scott Ananian
 @since 2.0
 @version $Id: Fraction.java 599500 2007-11-29 16:25:54Z mbenson $
 */
public final class Fraction extends Number implements Comparable {

    /**
     * Required for serialization support. Lang version 2.0.
     
     @see java.io.Serializable
     */
    private static final long serialVersionUID = 65382027393090L;

    /**
     * <code>Fraction</code> representation of 0.
     */
    public static final Fraction ZERO = new Fraction(01);
    /**
     * <code>Fraction</code> representation of 1.
     */
    public static final Fraction ONE = new Fraction(11);
    /**
     * <code>Fraction</code> representation of 1/2.
     */
    public static final Fraction ONE_HALF = new Fraction(12);
    /**
     * <code>Fraction</code> representation of 1/3.
     */
    public static final Fraction ONE_THIRD = new Fraction(13);
    /**
     * <code>Fraction</code> representation of 2/3.
     */
    public static final Fraction TWO_THIRDS = new Fraction(23);
    /**
     * <code>Fraction</code> representation of 1/4.
     */
    public static final Fraction ONE_QUARTER = new Fraction(14);
    /**
     * <code>Fraction</code> representation of 2/4.
     */
    public static final Fraction TWO_QUARTERS = new Fraction(24);
    /**
     * <code>Fraction</code> representation of 3/4.
     */
    public static final Fraction THREE_QUARTERS = new Fraction(34);
    /**
     * <code>Fraction</code> representation of 1/5.
     */
    public static final Fraction ONE_FIFTH = new Fraction(15);
    /**
     * <code>Fraction</code> representation of 2/5.
     */
    public static final Fraction TWO_FIFTHS = new Fraction(25);
    /**
     * <code>Fraction</code> representation of 3/5.
     */
    public static final Fraction THREE_FIFTHS = new Fraction(35);
    /**
     * <code>Fraction</code> representation of 4/5.
     */
    public static final Fraction FOUR_FIFTHS = new Fraction(45);


    /**
     * The numerator number part of the fraction (the three in three sevenths).
     */
    private final int numerator;
    /**
     * The denominator number part of the fraction (the seven in three sevenths).
     */
    private final int denominator;

    /**
     * Cached output hashCode (class is immutable).
     */
    private transient int hashCode = 0;
    /**
     * Cached output toString (class is immutable).
     */
    private transient String toString = null;
    /**
     * Cached output toProperString (class is immutable).
     */
    private transient String toProperString = null;

    /**
     * <p>Constructs a <code>Fraction</code> instance with the 2 parts
     * of a fraction Y/Z.</p>
     *
     @param numerator  the numerator, for example the three in 'three sevenths'
     @param denominator  the denominator, for example the seven in 'three sevenths'
     */
    private Fraction(int numerator, int denominator) {
        super();
        this.numerator = numerator;
        this.denominator = denominator;
    }

    /**
     * <p>Creates a <code>Fraction</code> instance with the 2 parts
     * of a fraction Y/Z.</p>
     *
     * <p>Any negative signs are resolved to be on the numerator.</p>
     *
     @param numerator  the numerator, for example the three in 'three sevenths'
     @param denominator  the denominator, for example the seven in 'three sevenths'
     @return a new fraction instance
     @throws ArithmeticException if the denomiator is <code>zero</code>
     */
    public static Fraction getFraction(int numerator, int denominator) {
        if (denominator == 0) {
            throw new ArithmeticException("The denominator must not be zero");
        }
        if (denominator < 0) {
            if (numerator==Integer.MIN_VALUE ||
                    denominator==Integer.MIN_VALUE) {
                throw new ArithmeticException("overflow: can't negate");
            }
            numerator = -numerator;
            denominator = -denominator;
        }
        return new Fraction(numerator, denominator);
    }

    /**
     * <p>Creates a <code>Fraction</code> instance with the 3 parts
     * of a fraction X Y/Z.</p>
     *
     * <p>The negative sign must be passed in on the whole number part.</p>
     *
     @param whole  the whole number, for example the one in 'one and three sevenths'
     @param numerator  the numerator, for example the three in 'one and three sevenths'
     @param denominator  the denominator, for example the seven in 'one and three sevenths'
     @return a new fraction instance
     @throws ArithmeticException if the denomiator is <code>zero</code>
     @throws ArithmeticException if the denominator is negative
     @throws ArithmeticException if the numerator is negative
     @throws ArithmeticException if the resulting numerator exceeds 
     *  <code>Integer.MAX_VALUE</code>
     */
    public static Fraction getFraction(int whole, int numerator, int denominator) {
        if (denominator == 0) {
            throw new ArithmeticException("The denominator must not be zero");
        }
        if (denominator < 0) {
            throw new ArithmeticException("The denominator must not be negative");
        }
        if (numerator < 0) {
            throw new ArithmeticException("The numerator must not be negative");
        }
        long numeratorValue;
        if (whole < 0) {
            numeratorValue = whole * (long)denominator - numerator;
        else {
            numeratorValue = whole * (long)denominator + numerator;
        }
        if (numeratorValue < Integer.MIN_VALUE ||
                numeratorValue > Integer.MAX_VALUE)  {
            throw new ArithmeticException("Numerator too large to represent as an Integer.");
        }
        return new Fraction((intnumeratorValue, denominator);
    }

    /**
     * <p>Creates a reduced <code>Fraction</code> instance with the 2 parts
     * of a fraction Y/Z.</p>
     *
     * <p>For example, if the input parameters represent 2/4, then the created
     * fraction will be 1/2.</p>
     *
     * <p>Any negative signs are resolved to be on the numerator.</p>
     *
     @param numerator  the numerator, for example the three in 'three sevenths'
     @param denominator  the denominator, for example the seven in 'three sevenths'
     @return a new fraction instance, with the numerator and denominator reduced
     @throws ArithmeticException if the denominator is <code>zero</code>
     */
    public static Fraction getReducedFraction(int numerator, int denominator) {
        if (denominator == 0) {
            throw new ArithmeticException("The denominator must not be zero");
        }
        if (numerator==0) {
            return ZERO; // normalize zero.
        }
        // allow 2^k/-2^31 as a valid fraction (where k>0)
        if (denominator==Integer.MIN_VALUE && (numerator&1)==0) {
            numerator/=2; denominator/=2;
        }
        if (denominator < 0) {
            if (numerator==Integer.MIN_VALUE ||
                    denominator==Integer.MIN_VALUE) {
                throw new ArithmeticException("overflow: can't negate");
            }
            numerator = -numerator;
            denominator = -denominator;
        }
        // simplify fraction.
        int gcd = greatestCommonDivisor(numerator, denominator);
        numerator /= gcd;
        denominator /= gcd;
        return new Fraction(numerator, denominator);
    }

    /**
     * <p>Creates a <code>Fraction</code> instance from a <code>double</code> value.</p>
     *
     * <p>This method uses the <a href="http://archives.math.utk.edu/articles/atuyl/confrac/">
     *  continued fraction algorithm</a>, computing a maximum of
     *  25 convergents and bounding the denominator by 10,000.</p>
     *
     @param value  the double value to convert
     @return a new fraction instance that is close to the value
     @throws ArithmeticException if <code>|value| > Integer.MAX_VALUE</code> 
     *  or <code>value = NaN</code>
     @throws ArithmeticException if the calculated denominator is <code>zero</code>
     @throws ArithmeticException if the the algorithm does not converge
     */
    public static Fraction getFraction(double value) {
        int sign = (value < ? -1);
        value = Math.abs(value);
        if (value  > Integer.MAX_VALUE || Double.isNaN(value)) {
            throw new ArithmeticException
                ("The value must not be greater than Integer.MAX_VALUE or NaN");
        }
        int wholeNumber = (intvalue;
        value -= wholeNumber;
        
        int numer0 = 0;  // the pre-previous
        int denom0 = 1;  // the pre-previous
        int numer1 = 1;  // the previous
        int denom1 = 0;  // the previous
        int numer2 = 0;  // the current, setup in calculation
        int denom2 = 0;  // the current, setup in calculation
        int a1 = (intvalue;
        int a2 = 0;
        double x1 = 1;
        double x2 = 0;
        double y1 = value - a1;
        double y2 = 0;
        double delta1, delta2 = Double.MAX_VALUE;
        double fraction;
        int i = 1;
//        System.out.println("---");
        do {
            delta1 = delta2;
            a2 = (int) (x1 / y1);
            x2 = y1;
            y2 = x1 - a2 * y1;
            numer2 = a1 * numer1 + numer0;
            denom2 = a1 * denom1 + denom0;
            fraction = (doublenumer2 / (doubledenom2;
            delta2 = Math.abs(value - fraction);
//            System.out.println(numer2 + " " + denom2 + " " + fraction + " " + delta2 + " " + y1);
            a1 = a2;
            x1 = x2;
            y1 = y2;
            numer0 = numer1;
            denom0 = denom1;
            numer1 = numer2;
            denom1 = denom2;
            i++;
//            System.out.println(">>" + delta1 +" "+ delta2+" "+(delta1 > delta2)+" "+i+" "+denom2);
        while ((delta1 > delta2&& (denom2 <= 10000&& (denom2 > 0&& (i < 25));
        if (i == 25) {
            throw new ArithmeticException("Unable to convert double to fraction");
        }
        return getReducedFraction((numer0 + wholeNumber * denom0* sign, denom0);
    }

    /**
     * <p>Creates a Fraction from a <code>String</code>.</p>
     *
     * <p>The formats accepted are:</p>
     *
     * <ol>
     *  <li><code>double</code> String containing a dot</li>
     *  <li>'X Y/Z'</li>
     *  <li>'Y/Z'</li>
     *  <li>'X' (a simple whole number)</li>
     * </ol>
     * and a .</p>
     *
     @param str  the string to parse, must not be <code>null</code>
     @return the new <code>Fraction</code> instance
     @throws IllegalArgumentException if the string is <code>null</code>
     @throws NumberFormatException if the number format is invalid
     */
    public static Fraction getFraction(String str) {
        if (str == null) {
            throw new IllegalArgumentException("The string must not be null");
        }
        // parse double format
        int pos = str.indexOf('.');
        if (pos >= 0) {
            return getFraction(Double.parseDouble(str));
        }

        // parse X Y/Z format
        pos = str.indexOf(' ');
        if (pos > 0) {
            int whole = Integer.parseInt(str.substring(0, pos));
            str = str.substring(pos + 1);
            pos = str.indexOf('/');
            if (pos < 0) {
                throw new NumberFormatException("The fraction could not be parsed as the format X Y/Z");
            else {
                int numer = Integer.parseInt(str.substring(0, pos));
                int denom = Integer.parseInt(str.substring(pos + 1));
                return getFraction(whole, numer, denom);
            }
        }

        // parse Y/Z format
        pos = str.indexOf('/');
        if (pos < 0) {
            // simple whole number
            return getFraction(Integer.parseInt(str)1);
        else {
            int numer = Integer.parseInt(str.substring(0, pos));
            int denom = Integer.parseInt(str.substring(pos + 1));
            return getFraction(numer, denom);
        }
    }

    // Accessors
    //-------------------------------------------------------------------

    /**
     * <p>Gets the numerator part of the fraction.</p>
     *
     * <p>This method may return a value greater than the denominator, an
     * improper fraction, such as the seven in 7/4.</p>
     *
     @return the numerator fraction part
     */
    public int getNumerator() {
        return numerator;
    }

    /**
     * <p>Gets the denominator part of the fraction.</p>
     *
     @return the denominator fraction part
     */
    public int getDenominator() {
        return denominator;
    }

    /**
     * <p>Gets the proper numerator, always positive.</p>
     *
     * <p>An improper fraction 7/4 can be resolved into a proper one, 1 3/4.
     * This method returns the 3 from the proper fraction.</p>
     *
     * <p>If the fraction is negative such as -7/4, it can be resolved into
     * -1 3/4, so this method returns the positive proper numerator, 3.</p>
     *
     @return the numerator fraction part of a proper fraction, always positive
     */
    public int getProperNumerator() {
        return Math.abs(numerator % denominator);
    }

    /**
     * <p>Gets the proper whole part of the fraction.</p>
     *
     * <p>An improper fraction 7/4 can be resolved into a proper one, 1 3/4.
     * This method returns the 1 from the proper fraction.</p>
     *
     * <p>If the fraction is negative such as -7/4, it can be resolved into
     * -1 3/4, so this method returns the positive whole part -1.</p>
     *
     @return the whole fraction part of a proper fraction, that includes the sign
     */
    public int getProperWhole() {
        return numerator / denominator;
    }

    // Number methods
    //-------------------------------------------------------------------

    /**
     * <p>Gets the fraction as an <code>int</code>. This returns the whole number
     * part of the fraction.</p>
     *
     @return the whole number fraction part
     */
    public int intValue() {
        return numerator / denominator;
    }

    /**
     * <p>Gets the fraction as a <code>long</code>. This returns the whole number
     * part of the fraction.</p>
     *
     @return the whole number fraction part
     */
    public long longValue() {
        return (longnumerator / denominator;
    }

    /**
     * <p>Gets the fraction as a <code>float</code>. This calculates the fraction
     * as the numerator divided by denominator.</p>
     *
     @return the fraction as a <code>float</code>
     */
    public float floatValue() {
        return ((floatnumerator((floatdenominator);
    }

    /**
     * <p>Gets the fraction as a <code>double</code>. This calculates the fraction
     * as the numerator divided by denominator.</p>
     *
     @return the fraction as a <code>double</code>
     */
    public double doubleValue() {
        return ((doublenumerator((doubledenominator);
    }

    // Calculations
    //-------------------------------------------------------------------

    /**
     * <p>Reduce the fraction to the smallest values for the numerator and
     * denominator, returning the result.</p>
     
     * <p>For example, if this fraction represents 2/4, then the result
     * will be 1/2.</p>
     *
     @return a new reduced fraction instance, or this if no simplification possible
     */
    public Fraction reduce() {
        if (numerator == 0) {
            return equals(ZEROthis : ZERO;
        }
        int gcd = greatestCommonDivisor(Math.abs(numerator), denominator);
        if (gcd == 1) {
            return this;
        }
        return Fraction.getFraction(numerator / gcd, denominator / gcd);
    }

    /**
     * <p>Gets a fraction that is the inverse (1/fraction) of this one.</p>
     
     * <p>The returned fraction is not reduced.</p>
     *
     @return a new fraction instance with the numerator and denominator
     *         inverted.
     @throws ArithmeticException if the fraction represents zero.
     */
    public Fraction invert() {
        if (numerator == 0) {
            throw new ArithmeticException("Unable to invert zero.");
        }
        if (numerator==Integer.MIN_VALUE) {
            throw new ArithmeticException("overflow: can't negate numerator");
        }
        if (numerator<0) {
            return new Fraction(-denominator, -numerator);
        else {
            return new Fraction(denominator, numerator);
        }
    }

    /**
     * <p>Gets a fraction that is the negative (-fraction) of this one.</p>
     *
     * <p>The returned fraction is not reduced.</p>
     *
     @return a new fraction instance with the opposite signed numerator
     */
    public Fraction negate() {
        // the positive range is one smaller than the negative range of an int.
        if (numerator==Integer.MIN_VALUE) {
            throw new ArithmeticException("overflow: too large to negate");
        }
        return new Fraction(-numerator, denominator);
    }

    /**
     * <p>Gets a fraction that is the positive equivalent of this one.</p>
     * <p>More precisely: <code>(fraction >= 0 ? this : -fraction)</code></p>
     *
     * <p>The returned fraction is not reduced.</p>
     *
     @return <code>this</code> if it is positive, or a new positive fraction
     *  instance with the opposite signed numerator
     */
    public Fraction abs() {
        if (numerator >= 0) {
            return this;
        }
        return negate();
    }

    /**
     * <p>Gets a fraction that is raised to the passed in power.</p>
     *
     * <p>The returned fraction is in reduced form.</p>
     *
     @param power  the power to raise the fraction to
     @return <code>this</code> if the power is one, <code>ONE</code> if the power
     * is zero (even if the fraction equals ZERO) or a new fraction instance 
     * raised to the appropriate power
     @throws ArithmeticException if the resulting numerator or denominator exceeds
     *  <code>Integer.MAX_VALUE</code>
     */
    public Fraction pow(int power) {
        if (power == 1) {
            return this;
        else if (power == 0) {
            return ONE;
        else if (power < 0) {
            if (power==Integer.MIN_VALUE) { // MIN_VALUE can't be negated.
                return this.invert().pow(2).pow(-(power/2));
            }
            return this.invert().pow(-power);
        else {
            Fraction f = this.multiplyBy(this);
            if ((power % 2== 0) { // if even...
                return f.pow(power/2);
            else // if odd...
                return f.pow(power/2).multiplyBy(this);
            }
        }
    }

    /**
     * <p>Gets the greatest common divisor of the absolute value of
     * two numbers, using the "binary gcd" method which avoids
     * division and modulo operations.  See Knuth 4.5.2 algorithm B.
     * This algorithm is due to Josef Stein (1961).</p>
     *
     @param u  a non-zero number
     @param v  a non-zero number
     @return the greatest common divisor, never zero
     */
    private static int greatestCommonDivisor(int u, int v) {
        //if either op. is abs 0 or 1, return 1:
        if (Math.abs(u<= || Math.abs(v<= 1) {
            return 1;
        }
        // keep u and v negative, as negative integers range down to
        // -2^31, while positive numbers can only be as large as 2^31-1
        // (i.e. we can't necessarily negate a negative number without
        // overflow)
        if (u>0) { u=-u; // make u negative
        if (v>0) { v=-v; // make v negative
        // B1. [Find power of 2]
        int k=0;
        while ((u&1)==&& (v&1)==&& k<31) { // while u and v are both even...
            u/=2; v/=2; k++; // cast out twos.
        }
        if (k==31) {
            throw new ArithmeticException("overflow: gcd is 2^31");
        }
        // B2. Initialize: u and v have been divided by 2^k and at least
        //     one is odd.
        int t = ((u&1)==1? v : -(u/2)/*B3*/;
        // t negative: u was odd, v may be even (t replaces v)
        // t positive: u was even, v is odd (t replaces u)
        do {
            /* assert u<0 && v<0; */
            // B4/B3: cast out twos from t.
            while ((t&1)==0) { // while t is even..
                t/=2// cast out twos
            }
            // B5 [reset max(u,v)]
            if (t>0) {
                u = -t;
            else {
                v = t;
            }
            // B6/B3. at this point both u and v should be odd.
            t = (v - u)/2;
            // |u| larger: t positive (replace u)
            // |v| larger: t negative (replace v)
        while (t!=0);
        return -u*(1<<k)// gcd is u*2^k
    }

    // Arithmetic
    //-------------------------------------------------------------------

    /** 
     * Multiply two integers, checking for overflow.
     
     @param x a factor
     @param y a factor
     @return the product <code>x*y</code>
     @throws ArithmeticException if the result can not be represented as
     *                             an int
     */
    private static int mulAndCheck(int x, int y) {
        long m = ((long)x)*((long)y);
        if (m < Integer.MIN_VALUE ||
            m > Integer.MAX_VALUE) {
            throw new ArithmeticException("overflow: mul");
        }
        return (int)m;
    }
    
    /**
     *  Multiply two non-negative integers, checking for overflow.
     
     @param x a non-negative factor
     @param y a non-negative factor
     @return the product <code>x*y</code>
     @throws ArithmeticException if the result can not be represented as
     * an int
     */
    private static int mulPosAndCheck(int x, int y) {
        /* assert x>=0 && y>=0; */
        long m = ((long)x)*((long)y);
        if (m > Integer.MAX_VALUE) {
            throw new ArithmeticException("overflow: mulPos");
        }
        return (int)m;
    }
    
    /** 
     * Add two integers, checking for overflow.
     
     @param x an addend
     @param y an addend
     @return the sum <code>x+y</code>
     @throws ArithmeticException if the result can not be represented as
     * an int
     */
    private static int addAndCheck(int x, int y) {
        long s = (long)x+(long)y;
        if (s < Integer.MIN_VALUE ||
            s > Integer.MAX_VALUE) {
            throw new ArithmeticException("overflow: add");
        }
        return (int)s;
    }
    
    /** 
     * Subtract two integers, checking for overflow.
     
     @param x the minuend
     @param y the subtrahend
     @return the difference <code>x-y</code>
     @throws ArithmeticException if the result can not be represented as
     * an int
     */
    private static int subAndCheck(int x, int y) {
        long s = (long)x-(long)y;
        if (s < Integer.MIN_VALUE ||
            s > Integer.MAX_VALUE) {
            throw new ArithmeticException("overflow: add");
        }
        return (int)s;
    }
    
    /**
     * <p>Adds the value of this fraction to another, returning the result in reduced form.
     * The algorithm follows Knuth, 4.5.1.</p>
     *
     @param fraction  the fraction to add, must not be <code>null</code>
     @return a <code>Fraction</code> instance with the resulting values
     @throws IllegalArgumentException if the fraction is <code>null</code>
     @throws ArithmeticException if the resulting numerator or denominator exceeds
     *  <code>Integer.MAX_VALUE</code>
     */
    public Fraction add(Fraction fraction) {
        return addSub(fraction, true /* add */);
    }

    /**
     * <p>Subtracts the value of another fraction from the value of this one, 
     * returning the result in reduced form.</p>
     *
     @param fraction  the fraction to subtract, must not be <code>null</code>
     @return a <code>Fraction</code> instance with the resulting values
     @throws IllegalArgumentException if the fraction is <code>null</code>
     @throws ArithmeticException if the resulting numerator or denominator
     *   cannot be represented in an <code>int</code>.
     */
    public Fraction subtract(Fraction fraction) {
        return addSub(fraction, false /* subtract */);
    }

    /** 
     * Implement add and subtract using algorithm described in Knuth 4.5.1.
     
     @param fraction the fraction to subtract, must not be <code>null</code>
     @param isAdd true to add, false to subtract
     @return a <code>Fraction</code> instance with the resulting values
     @throws IllegalArgumentException if the fraction is <code>null</code>
     @throws ArithmeticException if the resulting numerator or denominator
     *   cannot be represented in an <code>int</code>.
     */
    private Fraction addSub(Fraction fraction, boolean isAdd) {
        if (fraction == null) {
            throw new IllegalArgumentException("The fraction must not be null");
        }
        // zero is identity for addition.
        if (numerator == 0) {
            return isAdd ? fraction : fraction.negate();
        }
        if (fraction.numerator == 0) {
            return this;
        }     
        // if denominators are randomly distributed, d1 will be 1 about 61%
        // of the time.
        int d1 = greatestCommonDivisor(denominator, fraction.denominator);
        if (d1==1) {
            // result is ( (u*v' +/- u'v) / u'v')
            int uvp = mulAndCheck(numerator, fraction.denominator);
            int upv = mulAndCheck(fraction.numerator, denominator);
            return new Fraction
                (isAdd ? addAndCheck(uvp, upv: subAndCheck(uvp, upv),
                 mulPosAndCheck(denominator, fraction.denominator));
        }
        // the quantity 't' requires 65 bits of precision; see knuth 4.5.1
        // exercise 7.  we're going to use a BigInteger.
        // t = u(v'/d1) +/- v(u'/d1)
        BigInteger uvp = BigInteger.valueOf(numerator)
            .multiply(BigInteger.valueOf(fraction.denominator/d1));
        BigInteger upv = BigInteger.valueOf(fraction.numerator)
            .multiply(BigInteger.valueOf(denominator/d1));
        BigInteger t = isAdd ? uvp.add(upv: uvp.subtract(upv);
        // but d2 doesn't need extra precision because
        // d2 = gcd(t,d1) = gcd(t mod d1, d1)
        int tmodd1 = t.mod(BigInteger.valueOf(d1)).intValue();
        int d2 = (tmodd1==0)?d1:greatestCommonDivisor(tmodd1, d1);

        // result is (t/d2) / (u'/d1)(v'/d2)
        BigInteger w = t.divide(BigInteger.valueOf(d2));
        if (w.bitLength() 31) {
            throw new ArithmeticException
                ("overflow: numerator too large after multiply");
        }
        return new Fraction
            (w.intValue(),
             mulPosAndCheck(denominator/d1, fraction.denominator/d2));
    }

    /**
     * <p>Multiplies the value of this fraction by another, returning the 
     * result in reduced form.</p>
     *
     @param fraction  the fraction to multiply by, must not be <code>null</code>
     @return a <code>Fraction</code> instance with the resulting values
     @throws IllegalArgumentException if the fraction is <code>null</code>
     @throws ArithmeticException if the resulting numerator or denominator exceeds
     *  <code>Integer.MAX_VALUE</code>
     */
    public Fraction multiplyBy(Fraction fraction) {
        if (fraction == null) {
            throw new IllegalArgumentException("The fraction must not be null");
        }
        if (numerator == || fraction.numerator == 0) {
            return ZERO;
        }
        // knuth 4.5.1
        // make sure we don't overflow unless the result *must* overflow.
        int d1 = greatestCommonDivisor(numerator, fraction.denominator);
        int d2 = greatestCommonDivisor(fraction.numerator, denominator);
        return getReducedFraction
            (mulAndCheck(numerator/d1, fraction.numerator/d2),
             mulPosAndCheck(denominator/d2, fraction.denominator/d1));
    }

    /**
     * <p>Divide the value of this fraction by another.</p>
     *
     @param fraction  the fraction to divide by, must not be <code>null</code>
     @return a <code>Fraction</code> instance with the resulting values
     @throws IllegalArgumentException if the fraction is <code>null</code>
     @throws ArithmeticException if the fraction to divide by is zero
     @throws ArithmeticException if the resulting numerator or denominator exceeds
     *  <code>Integer.MAX_VALUE</code>
     */
    public Fraction divideBy(Fraction fraction) {
        if (fraction == null) {
            throw new IllegalArgumentException("The fraction must not be null");
        }
        if (fraction.numerator == 0) {
            throw new ArithmeticException("The fraction to divide by must not be zero");
        }
        return multiplyBy(fraction.invert());
    }

    // Basics
    //-------------------------------------------------------------------

    /**
     * <p>Compares this fraction to another object to test if they are equal.</p>.
     *
     * <p>To be equal, both values must be equal. Thus 2/4 is not equal to 1/2.</p>
     *
     @param obj the reference object with which to compare
     @return <code>true</code> if this object is equal
     */
    public boolean equals(Object obj) {
        if (obj == this) {
            return true;
        }
        if (obj instanceof Fraction == false) {
            return false;
        }
        Fraction other = (Fractionobj;
        return (getNumerator() == other.getNumerator() &&
                getDenominator() == other.getDenominator());
    }

    /**
     * <p>Gets a hashCode for the fraction.</p>
     *
     @return a hash code value for this object
     */
    public int hashCode() {
        if (hashCode == 0) {
            // hashcode update should be atomic.
            hashCode = 37 (37 17 + getNumerator()) + getDenominator();
        }
        return hashCode;
    }

    /**
     * <p>Compares this object to another based on size.</p>
     *
     * <p>Note: this class has a natural ordering that is inconsistent
     * with equals, because, for example, equals treats 1/2 and 2/4 as
     * different, whereas compareTo treats them as equal.
     *
     @param object  the object to compare to
     @return -1 if this is less, 0 if equal, +1 if greater
     @throws ClassCastException if the object is not a <code>Fraction</code>
     @throws NullPointerException if the object is <code>null</code>
     */
    public int compareTo(Object object) {
        Fraction other = (Fractionobject;
        if (this==other) {
            return 0;
        }
        if (numerator == other.numerator && denominator == other.denominator) {
            return 0;
        }

        // otherwise see which is less
        long first = (longnumerator * (longother.denominator;
        long second = (longother.numerator * (longdenominator;
        if (first == second) {
            return 0;
        else if (first < second) {
            return -1;
        else {
            return 1;
        }
    }

    /**
     * <p>Gets the fraction as a <code>String</code>.</p>
     *
     * <p>The format used is '<i>numerator</i>/<i>denominator</i>' always.
     *
     @return a <code>String</code> form of the fraction
     */
    public String toString() {
        if (toString == null) {
            toString = new StringBuffer(32)
                .append(getNumerator())
                .append('/')
                .append(getDenominator()).toString();
        }
        return toString;
    }

    /**
     * <p>Gets the fraction as a proper <code>String</code> in the format X Y/Z.</p>
     *
     * <p>The format used in '<i>wholeNumber</i> <i>numerator</i>/<i>denominator</i>'.
     * If the whole number is zero it will be ommitted. If the numerator is zero,
     * only the whole number is returned.</p>
     *
     @return a <code>String</code> form of the fraction
     */
    public String toProperString() {
        if (toProperString == null) {
            if (numerator == 0) {
                toProperString = "0";
            else if (numerator == denominator) {
                toProperString = "1";
            else if (numerator == -* denominator) {
                toProperString = "-1";
            else if ((numerator>0?-numerator:numerator< -denominator) {
                // note that we do the magnitude comparison test above with
                // NEGATIVE (not positive) numbers, since negative numbers
                // have a larger range.  otherwise numerator==Integer.MIN_VALUE
                // is handled incorrectly.
                int properNumerator = getProperNumerator();
                if (properNumerator == 0) {
                    toProperString = Integer.toString(getProperWhole());
                else {
                    toProperString = new StringBuffer(32)
                        .append(getProperWhole()).append(' ')
                        .append(properNumerator).append('/')
                        .append(getDenominator()).toString();
                }
            else {
                toProperString = new StringBuffer(32)
                    .append(getNumerator()).append('/')
                    .append(getDenominator()).toString();
            }
        }
        return toProperString;
    }
}
2. 13. Number
2. 13. 1. Check Number properties and convert from Number
2. 13. 2. Turns a string value into a java.lang.Number.
2. 13. 3. Fraction is a Number implementation that stores fractions accurately.
2. 13. 4. Represents a range of Number objects.
2. 13. 5. An integer synchronized counter class.
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.