Summarizing Data with CUBE : CUBE « Analytical Functions « SQL Server / T-SQL Tutorial

SQL Server / T-SQL Tutorial
1. Query
2. Insert Delete Update
3. Table
4. Table Join
5. Data Types
6. Set Operations
7. Constraints
8. Subquery
9. Aggregate Functions
10. Date Functions
11. Math Functions
12. String Functions
13. Data Convert Functions
14. Analytical Functions
15. Sequence Indentity
16. View
17. Index
18. Cursor
19. Database
20. Transact SQL
21. Procedure Function
22. Trigger
23. Transaction
24. XML
25. System Functions
26. System Settings
27. System Tables Views
28. User Role
29. CLR
Java
Java Tutorial
Java Source Code / Java Documentation
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
SQL Server / T-SQL Tutorial » Analytical Functions » CUBE 
14. 2. 1. Summarizing Data with CUBE
WITH CUBE summarizes total values based on the columns in the GROUP BY clause.
Extra NULL values were included in the result set for those rows that contained the WITH CUBE aggregate totals.

15CREATE TABLE employee(
16>    id          INTEGER NOT NULL PRIMARY KEY,
17>    first_name  VARCHAR(10),
18>    last_name   VARCHAR(10),
19>    salary      DECIMAL(10,2),
20>    start_Date  DATETIME,
21>    region      VARCHAR(10),
22>    city        VARCHAR(20),
23>    managerid   INTEGER
24);
25> GO
1INSERT INTO employee VALUES (1'Jason' ,  'Martin', 5890,'2005-03-22','North','Vancouver',3);
2> GO

(rows affected)
1INSERT INTO employee VALUES (2'Alison',  'Mathews',4789,'2003-07-21','South','Utown',4);
2> GO

(rows affected)
1INSERT INTO employee VALUES (3'James' ,  'Smith',  6678,'2001-12-01','North','Paris',5);
2> GO

(rows affected)
1INSERT INTO employee VALUES (4'Celia' ,  'Rice',   5567,'2006-03-03','South','London',6);
2> GO

(rows affected)
1INSERT INTO employee VALUES (5'Robert',  'Black',  4467,'2004-07-02','East','Newton',7);
2> GO

(rows affected)
1INSERT INTO employee VALUES (6'Linda' ,  'Green' , 6456,'2002-05-19','East','Calgary',8);
2> GO

(rows affected)
1INSERT INTO employee VALUES (7'David' ,  'Larry',  5345,'2008-03-18','West','New York',9);
2> GO

(rows affected)
1INSERT INTO employee VALUES (8'James' ,  'Cat',    4234,'2007-07-17','West','Regina',9);
2> GO

(rows affected)
1INSERT INTO employee VALUES (9'Joan'  ,  'Act',    6123,'2001-04-16','North','Toronto',10);
2> GO

(rows affected)
1>
2select from employee;
3> GO
id          first_name last_name  salary       start_Date              region     city                 managerid
----------- ---------- ---------- ------------ ----------------------- ---------- -------------------- -----------
          Jason      Martin          5890.00 2005-03-22 00:00:00.000 North      Vancouver                      3
          Alison     Mathews         4789.00 2003-07-21 00:00:00.000 South      Utown                          4
          James      Smith           6678.00 2001-12-01 00:00:00.000 North      Paris                          5
          Celia      Rice            5567.00 2006-03-03 00:00:00.000 South      London                         6
          Robert     Black           4467.00 2004-07-02 00:00:00.000 East       Newton                         7
          Linda      Green           6456.00 2002-05-19 00:00:00.000 East       Calgary                        8
          David      Larry           5345.00 2008-03-18 00:00:00.000 West       New York                       9
          James      Cat             4234.00 2007-07-17 00:00:00.000 West       Regina                         9
          Joan       Act             6123.00 2001-04-16 00:00:00.000 North      Toronto                       10

(rows affected)
1>
2>
3SELECT i.region,SUM(i.salaryTotal
4FROM employee i
5> GROUP BY i.region
6> WITH CUBE;
7> GO
region     Total
---------- ----------------------------------------
East                                       10923.00
North                                      18691.00
South                                      10356.00
West                                        9579.00
NULL                                       49549.00

(rows affected)
1>
2>
3>
4>
5> drop table employee;
6> GO
1>
14. 2. CUBE
14. 2. 1. Summarizing Data with CUBE
14. 2. 2. Using GROUPING with CUBE
14. 2. 3. Using the CUBE Operator
14. 2. 4. A summary query that includes a final summary row with 'WITH CUBE'
14. 2. 5. A summary query that includes a summary row for each set of groups
14. 2. 6. CUBE performs this rollup for every combination of grouped column values.
14. 2. 7. Creating the Vbase_cube View to Hide the CUBE Query Complexity
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.