Quake3Level.cs :  » Game » RealmForge » Axiom » SceneManagers » Bsp » C# / CSharp Open Source

Home
C# / CSharp Open Source
1.2.6.4 mono .net core
2.2.6.4 mono core
3.Aspect Oriented Frameworks
4.Bloggers
5.Build Systems
6.Business Application
7.Charting Reporting Tools
8.Chat Servers
9.Code Coverage Tools
10.Content Management Systems CMS
11.CRM ERP
12.Database
13.Development
14.Email
15.Forum
16.Game
17.GIS
18.GUI
19.IDEs
20.Installers Generators
21.Inversion of Control Dependency Injection
22.Issue Tracking
23.Logging Tools
24.Message
25.Mobile
26.Network Clients
27.Network Servers
28.Office
29.PDF
30.Persistence Frameworks
31.Portals
32.Profilers
33.Project Management
34.RSS RDF
35.Rule Engines
36.Script
37.Search Engines
38.Sound Audio
39.Source Control
40.SQL Clients
41.Template Engines
42.Testing
43.UML
44.Web Frameworks
45.Web Service
46.Web Testing
47.Wiki Engines
48.Windows Presentation Foundation
49.Workflows
50.XML Parsers
C# / C Sharp
C# / C Sharp by API
C# / CSharp Tutorial
C# / CSharp Open Source » Game » RealmForge 
RealmForge » Axiom » SceneManagers » Bsp » Quake3Level.cs
#region LGPL License
/*
Axiom Game Engine Library
Copyright (C) 2003  Axiom Project Team

The overall design, and a majority of the core engine and rendering code 
contained within this library is a derivative of the open source Object Oriented 
Graphics Engine OGRE, which can be found at http://ogre.sourceforge.net.  
Many thanks to the OGRE team for maintaining such a high quality project.

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#endregion

using System;
using System.Collections;
using System.IO;
using System.Text;
using System.Diagnostics;
using System.Runtime.InteropServices;

using Axiom.Core;
using Axiom.MathLib;
using Axiom.Media;
using Axiom.Graphics;

namespace Axiom.SceneManagers.Bsp{
  public enum Quake3LumpType
  {
    Entities = 0,
    Shaders,
    Planes,
    Nodes,
    Leaves,
    LeafFaces,
    LeafBrushes,
    Models,
    Brushes,
    BrushSides,
    Vertices,
    Elements,
    Fog,
    Faces,
    Lightmaps,
    LightVolumes,
    Visibility,
    NumLumps
  }

  /// <summary>
  ///    Support for loading and extracting data from a Quake3 level file.
  ///  </summary>
  ///  <remarks>
  ///    This class implements the required methods for opening Quake3 level files
    ///    and extracting the pertinent data within. Ogre supports BSP based levels
    ///    through it's own BspLevel class, which is not specific to any file format,
    ///    so this class is here to source that data from the Quake3 format.
    ///    </p>
    ///    Quake3 levels include far more than just data for rendering - typically the
    ///    <strong>leaves</strong> of the tree are used for rendering, and <strong>brushes,</strong>
    ///    are used to define convex hulls made of planes for collision detection. There are also
    ///    <strong>entities</strong> which define non-visual elements like player start
    ///    points, triggers etc and <strong>models</strong> which are used for movable
    ///    scenery like doors and platforms. <strong>Shaders</strong> meanwhile are textures
    ///    with extra effects and 'content flags' indicating special properties like
    ///    water or lava.
    ///    <p/>
    ///    I will try to support as much of this as I can in Ogre, but I won't duplicate
    ///    the structure or necesarily use the same terminology. Quake3 is designed for a very specific
    ///    purpose and code structure, whereas Ogre is designed to be more flexible,
    ///    so for example I'm likely to separate game-related properties like surface flags
    ///    from the generics of materials in my implementation.</p>
    ///    This is a utility class only - a single call to loadFromChunk should be
    ///    enough. You should not expect the state of this object to be consistent
    ///    between calls, since it uses pointers to memory which may no longer
    ///    be valid after the original call. This is why it has no accessor methods
    ///    for reading it's internal state.
    ///  </remarks>
  public class Quake3Level 
  {
    #region Internal storage
    // This is ALL temporary. Don't rely on it being static
    // NB no brushes, fog or local lightvolumes yet
    private Stream chunk;
    private InternalBspHeader header;
    
    private int[] elements;
    private string entities;
    private int[] leafBrushes;
    private int[] leafFaces;

    private InternalBspModel[] models;
    private InternalBspNode[] nodes;
    private InternalBspLeaf[] leaves;
    private InternalBspPlane[] planes;
    private InternalBspFace[] faces;
    private InternalBspVertex[] vertices;
    private InternalBspShader[] shaders;
    private InternalBspVis visData;
    private InternalBspBrush[] brushes;
    private InternalBspBrushSide[] brushSides;

    protected BspOptions options;
    #endregion

    #region Properties
    public int NumVertices { get { return vertices.Length; } }
    public int NumFaces  { get { return faces.Length; } }
    public int NumLeafFaces { get { return leafFaces.Length; } }
    public int NumElements { get { return elements.Length; } }
    public int NumNodes { get { return nodes.Length; } }
    public int NumLeaves { get { return leaves.Length; } }
    public int NumBrushes { get { return brushes.Length; } }
    public BspOptions Options { get { return options; } }

    public int[] LeafFaces { get { return leafFaces; } }
    public int[] LeafBrushes { get { return leafBrushes; } }
    public int[] Elements { get { return elements; } }
    public string Entities { get { return entities; } }
    public InternalBspVertex[] Vertices { get { return vertices; } }
    public InternalBspFace[] Faces { get { return faces; } }
    public InternalBspShader[] Shaders { get { return shaders; } }
    public InternalBspNode[] Nodes { get { return nodes; } }
    public InternalBspPlane[] Planes { get { return planes; } }
    public InternalBspBrush[] Brushes { get { return brushes; } }
    public InternalBspBrushSide[] BrushSides { get { return brushSides; } }
    public InternalBspVis VisData { get { return visData; } }
    public InternalBspLeaf[] Leaves { get { return leaves; } }
    #endregion

    #region Constructor
    public Quake3Level(BspOptions options)
    {
      this.options = options;
    }
    #endregion

    #region Methods
    /// <summary>
    ///    Utility function read the header.
    /// </summary>
    public void Initialize()
    {
      BinaryReader reader = new BinaryReader(chunk);

      header = new InternalBspHeader();
      header.magic = System.Text.Encoding.ASCII.GetChars(reader.ReadBytes(4));
      header.version = reader.ReadInt32();
      header.lumps = new InternalBspLump[(int) Quake3LumpType.NumLumps];
      
      for(int i = 0; i < (int) Quake3LumpType.NumLumps; i++)
      {
        header.lumps[i] = new InternalBspLump();
        header.lumps[i].offset = reader.ReadInt32();
        header.lumps[i].size = reader.ReadInt32();
      }

      ReadEntities(header.lumps[(int) Quake3LumpType.Entities], reader);
      ReadElements(header.lumps[(int) Quake3LumpType.Elements], reader);
      ReadFaces(header.lumps[(int) Quake3LumpType.Faces], reader);
      ReadLeafFaces(header.lumps[(int) Quake3LumpType.LeafFaces], reader);
      ReadLeaves(header.lumps[(int) Quake3LumpType.Leaves], reader);
      ReadModels(header.lumps[(int) Quake3LumpType.Models], reader);
      ReadNodes(header.lumps[(int) Quake3LumpType.Nodes], reader);
      ReadPlanes(header.lumps[(int) Quake3LumpType.Planes], reader);
      ReadShaders(header.lumps[(int) Quake3LumpType.Shaders], reader);
      ReadVisData(header.lumps[(int) Quake3LumpType.Visibility], reader);
      ReadVertices(header.lumps[(int) Quake3LumpType.Vertices], reader);
      ReadLeafBrushes(header.lumps[(int) Quake3LumpType.LeafBrushes], reader);
      ReadBrushes(header.lumps[(int) Quake3LumpType.Brushes], reader);
      ReadBrushSides(header.lumps[(int) Quake3LumpType.BrushSides], reader);
    }

    /// <summary>
    ///    Reads Quake3 bsp data from a chunk of memory as read from the file.
    ///  </summary>
    ///  <remarks>
    ///    Since ResourceManagers generally locate data in a variety of
    ///    places they typically manipulate them as a chunk of data, rather than
    ///    a file pointer since this is unsupported through compressed archives.
    ///    <p/>
    ///    Quake3 files are made up of a header (which contains version info and
    ///    a table of the contents) and 17 'lumps' i.e. sections of data,
    ///    the offsets to which are kept in the table of contents. The 17 types
    ///    are predefined.
    /// </remarks>
    /// <param name="chunk">Input stream containing Quake3 data.</param>
    public void LoadFromStream(Stream inChunk)
    {
      chunk = inChunk;

      Initialize();
      DumpContents();
    }

    /// <summary>
    ///    Extracts the embedded lightmap texture data and loads them as textures.
    /// </summary>
    /// <remarks>
    ///    Calling this method makes the lightmap texture data embedded in
    ///    the .bsp file available to the renderer. Lightmaps are extracted
    ///    and loaded as Texture objects (subclass specific to RenderSystem
    ///    subclass) and are named "@lightmap1", "@lightmap2" etc.
    /// </remarks>
    public void ExtractLightmaps()
    {
      chunk.Seek(header.lumps[(int) Quake3LumpType.Lightmaps].offset, SeekOrigin.Begin);
      int numLightmaps = header.lumps[(int) Quake3LumpType.Lightmaps].size / BspLevel.LightmapSize;

      // Lightmaps are always 128x128x24 (RGB).
      for(int i = 0; i < numLightmaps; i++)
      {
        string name = String.Format("@lightmap{0}", i);
        byte[] buffer = new byte[BspLevel.LightmapSize];
        chunk.Read(buffer, 0, BspLevel.LightmapSize);

        // Load, no mipmaps, brighten by factor 4
        // Set gamma explicitly, OpenGL doesn't apply it
        // CHECK: Make OpenGL apply gamma at LoadImage
        Image.ApplyGamma(buffer, 4, buffer.Length, 24);
        MemoryStream stream = new MemoryStream(buffer);    
        Image img = Image.FromRawStream(stream, 128, 128, PixelFormat.R8G8B8);
        TextureManager.Instance.LoadImage(name, img, TextureType.TwoD, -1, 1, 1);        
      }
    }

    /// <summary>
    ///    Debug method.
    /// </summary>
    public void DumpContents()
    {
      LogManager.Instance.Write("Quake3 level statistics");
      LogManager.Instance.Write("-----------------------");
      LogManager.Instance.Write("Entities    : " + entities.Length.ToString());
      LogManager.Instance.Write("Faces      : " + faces.Length.ToString());
      LogManager.Instance.Write("Leaf Faces    : " + leafFaces.Length.ToString());
      LogManager.Instance.Write("Leaves      : " + leaves.Length.ToString());
      LogManager.Instance.Write("Lightmaps    : " + header.lumps[(int) Quake3LumpType.Lightmaps].size / BspLevel.LightmapSize);
      LogManager.Instance.Write("Elements    : " + elements.Length.ToString());
      LogManager.Instance.Write("Models      : " + models.Length.ToString());
      LogManager.Instance.Write("Nodes      : " + nodes.Length.ToString());
      LogManager.Instance.Write("Planes      : " + planes.Length.ToString());
      LogManager.Instance.Write("Shaders    : " + shaders.Length.ToString());
      LogManager.Instance.Write("Vertices    : " + vertices.Length.ToString());
      LogManager.Instance.Write("Vis Clusters  : " + visData.clusterCount.ToString());
      LogManager.Instance.Write("");
      LogManager.Instance.Write("-= Shaders =-");

      for(int i = 0; i < shaders.Length; i++)
        LogManager.Instance.Write(String.Format("Shader {0}: {1:x}", i, shaders[i].name));

      LogManager.Instance.Write("");
      LogManager.Instance.Write("-= Entities =-");

      string[] ents = entities.Split('\0');

      for(int i = 0; i < ents.Length; i++)
        LogManager.Instance.Write(ents[i]);
    }

    private void ReadEntities(InternalBspLump lump, BinaryReader reader)
    {
      reader.BaseStream.Seek(lump.offset, SeekOrigin.Begin);
      entities = Encoding.ASCII.GetString(reader.ReadBytes(lump.size));
    }

    private void ReadElements(InternalBspLump lump, BinaryReader reader)
    {
      reader.BaseStream.Seek(lump.offset, SeekOrigin.Begin);
      elements = new int[lump.size / Marshal.SizeOf(typeof(int))];

      for(int i = 0; i < elements.Length; i++)
        elements[i] = reader.ReadInt32();
    }

    private void ReadFaces(InternalBspLump lump, BinaryReader reader)
    {
      reader.BaseStream.Seek(lump.offset, SeekOrigin.Begin);
      faces = new InternalBspFace[lump.size / Marshal.SizeOf(typeof(InternalBspFace))];

      for(int i = 0; i < faces.Length; i++)
      {

        faces[i] = new InternalBspFace();
        faces[i].shader = reader.ReadInt32();
        faces[i].unknown = reader.ReadInt32();
        faces[i].type = (BspFaceType) Enum.Parse(typeof(BspFaceType), reader.ReadInt32().ToString());
        faces[i].vertStart = reader.ReadInt32();
        faces[i].vertCount = reader.ReadInt32();
        faces[i].elemStart = reader.ReadInt32();
        faces[i].elemCount = reader.ReadInt32();
        faces[i].lmTexture = reader.ReadInt32();

        faces[i].lmOffset = new int[] { reader.ReadInt32(), reader.ReadInt32() };
        faces[i].lmSize = new int[] { reader.ReadInt32(), reader.ReadInt32() };
        faces[i].org = new float[] { reader.ReadSingle(), reader.ReadSingle(), reader.ReadSingle() };
        
        faces[i].bbox = new float[6];

        for(int j = 0; j < faces[i].bbox.Length; j++)
          faces[i].bbox[j] = reader.ReadSingle();

        faces[i].normal = new float[] { reader.ReadSingle(), reader.ReadSingle(), reader.ReadSingle() };
        faces[i].meshCtrl = new int[] { reader.ReadInt32(), reader.ReadInt32() };

        TransformBoundingBox(faces[i].bbox);
        TransformVector(faces[i].org);
        TransformVector(faces[i].normal, true);
      }
    }

    private void ReadLeafFaces(InternalBspLump lump, BinaryReader reader)
    {
      reader.BaseStream.Seek(lump.offset, SeekOrigin.Begin);
      leafFaces = new int[lump.size / Marshal.SizeOf(typeof(int))];

      for(int i = 0; i < leafFaces.Length; i++)
        leafFaces[i] = reader.ReadInt32();
    }

    private void ReadLeaves(InternalBspLump lump, BinaryReader reader)
    {
      reader.BaseStream.Seek(lump.offset, SeekOrigin.Begin);
      leaves = new InternalBspLeaf[lump.size / Marshal.SizeOf(typeof(InternalBspLeaf))];

      for(int i = 0; i < leaves.Length; i++)
      {
        leaves[i] = new InternalBspLeaf();
        leaves[i].cluster = reader.ReadInt32();
        leaves[i].area = reader.ReadInt32();
        
        leaves[i].bbox = new int[6];

        for(int j = 0; j < leaves[i].bbox.Length; j++)
          leaves[i].bbox[j] = reader.ReadInt32();

        leaves[i].faceStart = reader.ReadInt32();
        leaves[i].faceCount = reader.ReadInt32();
        leaves[i].brushStart = reader.ReadInt32();
        leaves[i].brushCount = reader.ReadInt32();

        TransformBoundingBox(leaves[i].bbox);
      }
    }

    private void ReadModels(InternalBspLump lump, BinaryReader reader)
    {
      reader.BaseStream.Seek(lump.offset, SeekOrigin.Begin);
      models = new InternalBspModel[lump.size / Marshal.SizeOf(typeof(InternalBspModel))];

      for(int i = 0; i < models.Length; i++)
      {
        models[i] = new InternalBspModel();
        models[i].bbox = new float[6];

        for(int j = 0; j < models[i].bbox.Length; j++)
          models[i].bbox[j] = reader.ReadSingle();

        models[i].faceStart = reader.ReadInt32();
        models[i].faceCount = reader.ReadInt32();
        models[i].brushStart = reader.ReadInt32();
        models[i].brushCount = reader.ReadInt32();

        TransformBoundingBox(models[i].bbox);
      }
    }

    private void ReadNodes(InternalBspLump lump, BinaryReader reader)
    {
      reader.BaseStream.Seek(lump.offset, SeekOrigin.Begin);
      nodes = new InternalBspNode[lump.size / Marshal.SizeOf(typeof(InternalBspNode))];

      for(int i = 0; i < nodes.Length; i++)
      {
        nodes[i] = new InternalBspNode();
        nodes[i].plane = reader.ReadInt32();
        nodes[i].front = reader.ReadInt32();
        nodes[i].back = reader.ReadInt32();
        nodes[i].bbox = new int[6];

        for(int j = 0; j < nodes[i].bbox.Length; j++)
          nodes[i].bbox[j] = reader.ReadInt32();

        TransformBoundingBox(nodes[i].bbox);
      }
    }

    private void ReadPlanes(InternalBspLump lump, BinaryReader reader)
    {
      reader.BaseStream.Seek(lump.offset, SeekOrigin.Begin);
      planes = new InternalBspPlane[lump.size / Marshal.SizeOf(typeof(InternalBspPlane))];

      for(int i = 0; i < planes.Length; i++)
      {
        planes[i] = new InternalBspPlane();
        planes[i].normal = new float[] { reader.ReadSingle(), reader.ReadSingle(), reader.ReadSingle() };
        planes[i].distance = reader.ReadSingle();

        TransformPlane(planes[i].normal, ref planes[i].distance);
      }
    }

    private void ReadShaders(InternalBspLump lump, BinaryReader reader)
    {
      reader.BaseStream.Seek(lump.offset, SeekOrigin.Begin);
      shaders = new InternalBspShader[lump.size / Marshal.SizeOf(typeof(InternalBspShader))];

      for(int i = 0; i < shaders.Length; i++)
      {
        char[] name = Encoding.ASCII.GetChars(reader.ReadBytes(64));

        shaders[i] = new InternalBspShader();
        shaders[i].surfaceFlags = (SurfaceFlags) Enum.Parse(typeof(SurfaceFlags), reader.ReadInt32().ToString());
        shaders[i].contentFlags = (ContentFlags) Enum.Parse(typeof(ContentFlags), reader.ReadInt32().ToString());

        foreach(char c in name)
        {
          if(c == '\0')
            break;

          shaders[i].name += c;
        }
      }
    }

    private void ReadVisData(InternalBspLump lump, BinaryReader reader)
    {
      reader.BaseStream.Seek(lump.offset, SeekOrigin.Begin);
      
      visData = new InternalBspVis();
      visData.clusterCount = reader.ReadInt32();
      visData.rowSize = reader.ReadInt32();
      visData.data = reader.ReadBytes(lump.offset - (Marshal.SizeOf(typeof(int)) * 2));
    }

    private void ReadVertices(InternalBspLump lump, BinaryReader reader)
    {
      reader.BaseStream.Seek(lump.offset, SeekOrigin.Begin);
      vertices = new InternalBspVertex[lump.size / Marshal.SizeOf(typeof(InternalBspVertex))];

      for(int i = 0; i < vertices.Length; i++)
      {
        vertices[i] = new InternalBspVertex();
        vertices[i].point = new float[] { reader.ReadSingle(), reader.ReadSingle(), reader.ReadSingle() };
        vertices[i].texture = new float[] { reader.ReadSingle(), reader.ReadSingle() };
        vertices[i].lightMap = new float[] { reader.ReadSingle(), reader.ReadSingle() };
        vertices[i].normal = new float[] { reader.ReadSingle(), reader.ReadSingle(), reader.ReadSingle() };
        vertices[i].color = reader.ReadInt32();

        TransformVector(vertices[i].point);
        TransformVector(vertices[i].normal, true);
      }
    }

    private void ReadLeafBrushes(InternalBspLump lump, BinaryReader reader)
    {
      reader.BaseStream.Seek(lump.offset, SeekOrigin.Begin);
      leafBrushes = new int[lump.size / Marshal.SizeOf(typeof(int))];

      for(int i = 0; i < leafBrushes.Length; i++)
        leafBrushes[i] = reader.ReadInt32();
    }

    private void ReadBrushes(InternalBspLump lump, BinaryReader reader)
    {
      reader.BaseStream.Seek(lump.offset, SeekOrigin.Begin);
      brushes = new InternalBspBrush[lump.size / Marshal.SizeOf(typeof(InternalBspBrush))];

      for(int i = 0; i < brushes.Length; i++)
      {
        brushes[i] = new InternalBspBrush();
        brushes[i].firstSide = reader.ReadInt32();
        brushes[i].numSides = reader.ReadInt32();
        brushes[i].shaderIndex = reader.ReadInt32();
      }
    }

    private void ReadBrushSides(InternalBspLump lump, BinaryReader reader)
    {
      reader.BaseStream.Seek(lump.offset, SeekOrigin.Begin);
      brushSides = new InternalBspBrushSide[lump.size / Marshal.SizeOf(typeof(InternalBspBrushSide))];

      for(int i = 0; i < brushSides.Length; i++)
      {
        brushSides[i] = new InternalBspBrushSide();
        brushSides[i].planeNum = reader.ReadInt32();
        brushSides[i].content = reader.ReadInt32();
      }
    }

    internal void TransformVector(float[] v, bool isNormal, int pos)
    {
      if (options.setYAxisUp)
      {
        Swap(ref v[pos + 1], ref v[pos + 2]);
        v[pos + 2] = -v[pos + 2];
      }
            
      if (!isNormal)
      {
        for (int i = pos; i < pos + 3; i++)
          v[i] *= options.scale;

        Vector3 move = options.move;
        v[pos] += options.move.x;
        v[pos + 1] += options.move.y;
        v[pos + 2] += options.move.z;
      }
    }

    internal void TransformVector(float[] v, bool isNormal)
    {
      TransformVector(v, isNormal, 0);
    }

    internal void TransformVector(float[] v, int pos)
    {
      TransformVector(v, false, pos);
    }

    internal void TransformVector(float[] v)
    {
      TransformVector(v, false, 0);
    }

    internal void TransformPlane(float[] norm, ref float dist)
    {
      TransformVector(norm, true);
      dist *= options.scale;
      Vector3 normal = new Vector3(norm[0], norm[1], norm[2]);
      Vector3 point = normal * dist;
            point += options.move;
      dist = normal.Dot(point);
    }

    internal void TransformBoundingBox(float[] bb)
    {
      TransformVector(bb, 0);
      TransformVector(bb, 3);
      if (options.setYAxisUp)
        Swap(ref bb[2], ref bb[5]);
    }

    internal void TransformBoundingBox(int[] bb)
    {
      float[] floatbb = new float[6];
      for (int i = 0; i < 6; i++)
        floatbb[i] = (float)bb[i];

      TransformBoundingBox(floatbb);

      for (int i = 0; i < 6; i++)
        bb[i] = Convert.ToInt32(floatbb[i]);
    }

    private void Swap(ref float num1, ref float num2)
    {
      float tmp = num1;
      num1 = num2;
      num2 = tmp;
    }

    private void Swap(ref int num1, ref int num2)
    {
      int tmp = num1;
      num1 = num2;
      num2 = tmp;
    }
    #endregion
  }

  [StructLayout(LayoutKind.Sequential)]
  public struct InternalBspPlane
  {
    [MarshalAs(UnmanagedType.ByValArray, SizeConst=3)]
    public float[] normal;
    public float distance;
  }

  [StructLayout(LayoutKind.Sequential)]
  public struct InternalBspModel
  {
    [MarshalAs(UnmanagedType.ByValArray, SizeConst=6)]
    public float[] bbox;
    public int faceStart;
    public int faceCount;
    public int brushStart;
    public int brushCount;
  }

  [StructLayout(LayoutKind.Sequential)]
  public struct InternalBspNode
  {
    public int plane;          // dividing plane
    //int children[2];    // left and right nodes,
    // negative are leaves
    public int front;
    public int back;

    [MarshalAs(UnmanagedType.ByValArray, SizeConst=6)]
    public int[] bbox;
  }

  [StructLayout(LayoutKind.Sequential)]
  public struct InternalBspLeaf
  {
    public int cluster;    // visibility cluster number
    public int area;
    [MarshalAs(UnmanagedType.ByValArray, SizeConst=6)]
    public int[] bbox;
    public int faceStart;
    public int faceCount;
    public int brushStart;
    public int brushCount;
  }

  [StructLayout(LayoutKind.Sequential)]
  public struct InternalBspFace
  {
    public int shader;         // shader ref
    public int unknown;
    public BspFaceType type;           // face type
    public int vertStart;
    public int vertCount;
    public int elemStart;
    public int elemCount;
    public int lmTexture;     // lightmap
    [MarshalAs(UnmanagedType.ByValArray, SizeConst=2)]
    public int[] lmOffset;
    [MarshalAs(UnmanagedType.ByValArray, SizeConst=2)]
    public int[] lmSize;
    [MarshalAs(UnmanagedType.ByValArray, SizeConst=3)]
    public float[] org;       // facetype_normal only
    [MarshalAs(UnmanagedType.ByValArray, SizeConst=6)]
    public float[] bbox;      // facetype_patch only
    [MarshalAs(UnmanagedType.ByValArray, SizeConst=3)]
    public float[] normal;    // facetype_normal only
    [MarshalAs(UnmanagedType.ByValArray, SizeConst=2)]
    public int[] meshCtrl;     // patch control point dims
  }

  [StructLayout(LayoutKind.Explicit)]
  public struct InternalBspShader
  {
    [FieldOffset(0)]
    [MarshalAs(UnmanagedType.LPStr)]
    public string name;
    [FieldOffset(64)]
    public SurfaceFlags surfaceFlags;
    [FieldOffset(68)]
    public ContentFlags contentFlags;
  }

  [StructLayout(LayoutKind.Sequential)]
  public struct InternalBspVertex
  {
    [MarshalAs(UnmanagedType.ByValArray, SizeConst=3)]
    public float[] point;
    [MarshalAs(UnmanagedType.ByValArray, SizeConst=2)]
    public float[] texture;
    [MarshalAs(UnmanagedType.ByValArray, SizeConst=2)]
    public float[] lightMap;
    [MarshalAs(UnmanagedType.ByValArray, SizeConst=3)]
    public float[] normal;
    public int color;
  }

  [StructLayout(LayoutKind.Sequential)]
  public struct InternalBspVis
  {
    public int clusterCount;
    public int rowSize;
    public byte[] data;
  }

  
  [StructLayout(LayoutKind.Sequential)]
  public struct InternalBspLump
  {
    public int offset;
    public int size;
  }

  [StructLayout(LayoutKind.Sequential)]
  public struct InternalBspHeader
  {
    [MarshalAs(UnmanagedType.ByValArray, SizeConst=4)]
    public char[] magic;
    public int version;
    
    [MarshalAs(UnmanagedType.ByValArray, SizeConst=17)]
    public InternalBspLump[] lumps;
  }


  [StructLayout(LayoutKind.Sequential)]
  public struct InternalBspBrushSide
  {
    public int planeNum;
    public int content;      // ?shader?
  }

  [StructLayout(LayoutKind.Sequential)]
  public struct InternalBspBrush
  {
    public int firstSide;
    public int numSides;
    public int shaderIndex;
  }

  [Flags]
  public enum ContentFlags : uint
  {
    /// <summary>An eye is never valid in a solid.</summary>
    Solid = 1,
    Lava = 8,
    Slime = 16,
    Water = 32,
    Fog = 64,
    
    AreaPortal = 0x8000,
    PlayerClip = 0x10000,
    MonsterClip = 0x20000,
      
    /// <summary>Bot specific.</summary>
    Teleporter = 0x40000,
    /// <summary>Bot specific.</summary>
    JumpPad = 0x80000,
    /// <summary>Bot specific.</summary>
    ClusterPortal = 0x100000,
    /// <summary>Bot specific.</summary>
    DoNotEnter = 0x200000,

    /// <summary>Removed before bsping an entity.</summary>
    Origin = 0x1000000,

    /// <summary>Should never be on a brush, only in game.</summary>
    Body = 0x2000000,
    Corpse = 0x4000000,
    /// <summary>Brushes not used for the bsp.</summary>
    Detail = 0x8000000,
    /// <summary>Brushes used for the bsp.</summary>
    Structural = 0x10000000,
    /// <summary>Don't consume surface fragments inside.</summary>
    Translucent = 0x20000000,
    Trigger = 0x40000000,
    /// <summary>Don't leave bodies or items (death fog, lava).</summary>
    NoDrop = 0x80000000
  }

  [Flags]
  public enum SurfaceFlags
  {
    /// <summary>Never give falling damage.</summary>
    NoDamage = 0x1,
    /// <summary>Effects game physics.</summary>
    Slick = 0x2,
    /// <summary>Lighting from environment map.</summary>
    Sky = 0x4,
    Ladder = 0x8,
    /// <summary>Don't make missile explosions.</summary>
    NoImpact = 0x10,
    /// <summary>Don't leave missile marks.</summary>
    NoMarks = 0x20,
    /// <summary>Make flesh sounds and effects.</summary>
    Flesh = 0x40,
    /// <summary>Don't generate a drawsurface at all.</summary>
    NoDraw = 0x80,
    /// <summary>Make a primary bsp splitter.</summary>
    Hint = 0x100,
    /// <summary>Completely ignore, allowing non-closed brushes.</summary>
    Skip = 0x200,
    /// <summary>Surface doesn't need a lightmap.</summary>
    NoLightmap = 0x400,
    /// <summary>Generate lighting info at vertexes.</summary>
    PointLight = 0x800,
    /// <summary>Clanking footsteps.</summary>
    MetalSteps = 0x1000,
    /// <summary>No footstep sounds.</summary>
    NoSteps = 0x2000,
    /// <summary>Don't collide against curves with this set.</summary>
    NonSolid = 0x4000,
    /// <summary>Act as a light filter during q3map -light.</summary>
    LightFilter = 0x8000,
    /// <summary>Do per-pixel light shadow casting in q3map.</summary>
    AlphaShadow = 0x10000,
    /// <summary>Don't dlight even if solid (solid lava, skies).</summary>
    NoDLight = 0x20000
  }

  public enum BspFaceType
  {
    Normal = 1,
    Patch = 2,
    Mesh = 3,
    Flare = 4
  }
}
www.java2v.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.