ReverseStrategy.cs :  » Game » SokoSolve-Sokoban » SokoSolve » Core » Analysis » Solver » Reverse » C# / CSharp Open Source

Home
C# / CSharp Open Source
1.2.6.4 mono .net core
2.2.6.4 mono core
3.Aspect Oriented Frameworks
4.Bloggers
5.Build Systems
6.Business Application
7.Charting Reporting Tools
8.Chat Servers
9.Code Coverage Tools
10.Content Management Systems CMS
11.CRM ERP
12.Database
13.Development
14.Email
15.Forum
16.Game
17.GIS
18.GUI
19.IDEs
20.Installers Generators
21.Inversion of Control Dependency Injection
22.Issue Tracking
23.Logging Tools
24.Message
25.Mobile
26.Network Clients
27.Network Servers
28.Office
29.PDF
30.Persistence Frameworks
31.Portals
32.Profilers
33.Project Management
34.RSS RDF
35.Rule Engines
36.Script
37.Search Engines
38.Sound Audio
39.Source Control
40.SQL Clients
41.Template Engines
42.Testing
43.UML
44.Web Frameworks
45.Web Service
46.Web Testing
47.Wiki Engines
48.Windows Presentation Foundation
49.Workflows
50.XML Parsers
C# / C Sharp
C# / C Sharp by API
C# / CSharp Tutorial
C# / CSharp Open Source » Game » SokoSolve Sokoban 
SokoSolve Sokoban » SokoSolve » Core » Analysis » Solver » Reverse » ReverseStrategy.cs
using System;
using System.Collections.Generic;
using System.Data;
using System.Text;
using SokoSolve.Common.Math;
using SokoSolve.Common.Structures;
using SokoSolve.Common.Structures.Evaluation;
using SokoSolve.Core.Analysis.Solver.SolverStaticAnalysis;

namespace SokoSolve.Core.Analysis.Solver.Reverse{
    /// <summary>
    /// Work backwards from a goal position to the initial crate position
    /// </summary>
    public class ReverseStrategy : EvaluationStrategyBase<SolverNode>
    {
        /// <summary>
        /// Strong Constructor
        /// </summary>
        /// <param name="controller"></param>
        public ReverseStrategy(SolverController controller) : base(new SolverItterator(controller))
        {
            this.controller = controller;
            cachedNodes = new SolverNodeCollection();
        }

        /// <summary>
        /// Evaluation tree of search positions
        /// </summary>
        public Tree<SolverNode> EvaluationTree
        {
            get { return base.evaluation; }
        }

        /// <summary>
        /// Provide access to static analysis
        /// </summary>
        private StaticAnalysis StaticAnalysis
        {
            get { return controller.StaticAnalysis;  }
        }

        /// <summary>
        /// Initialise the start conditions for the search. Prepare the root search node
        /// </summary>
        /// <returns>Return the root search node for init and eval</returns>
        public override SolverNode InitStartConditions()
        {
            if (StaticAnalysis == null) throw new NoNullAllowedException("StaticAnalysis");
            SolverNode endposition = new SolverNode();
            endposition.NodeID = "R0";

            // Crate map is the goal map
            endposition.CrateMap = StaticAnalysis.GoalMap;

            // We do not know that the player position is at the end
            //endposition.PlayerPosition = VectorInt.Empty; 

            // Similarly, we do not know what the final move map is.
            // We need to merge all posible end move maps.
            endposition.MoveMap = new Bitmap(endposition.CrateMap.Size);
            foreach (VectorInt crate in endposition.CrateMap.TruePositions)
            {
                CheckPosiblePlayerEndPosition(endposition, crate, Direction.Up);
                CheckPosiblePlayerEndPosition(endposition, crate, Direction.Down);
                CheckPosiblePlayerEndPosition(endposition, crate, Direction.Left);
                CheckPosiblePlayerEndPosition(endposition, crate, Direction.Right);
            }

            endposition.Weighting = 100;

            return endposition;
        }

        /// <summary>
        /// Generate the end position for the player (by merging all possition end positions)
        /// </summary>
        /// <param name="endposition"></param>
        /// <param name="crate"></param>
        /// <param name="pullDirection"></param>
        private void CheckPosiblePlayerEndPosition(SolverNode endposition, VectorInt crate, Direction pullDirection)
        {
            VectorInt newCratePosition = crate.Offset(pullDirection);
            VectorInt newPlayerPosition = crate.Offset(pullDirection).Offset(pullDirection);
            VectorInt oldPlayerPosition = newCratePosition;


            // Bounds check
            if (newCratePosition.X < 0 || newCratePosition.X >= endposition.CrateMap.Size.X ||
                newCratePosition.Y < 0 || newCratePosition.Y >= endposition.CrateMap.Size.Y)
            {
                return;
            }

            // Bounds check
            if (newPlayerPosition.X < 0 || newPlayerPosition.X >= endposition.CrateMap.Size.X ||
              newPlayerPosition.Y < 0 || newPlayerPosition.Y >= endposition.CrateMap.Size.Y)
            {
                return;
            }

            // Already a move map
            if (endposition.MoveMap[oldPlayerPosition])
            {
                return;
            }

            // Must be a crate to pull
            if (!endposition.CrateMap[crate]) return;

            // Player must move into a space
            if (StaticAnalysis.BoundryMap[newPlayerPosition]) return;
            if (endposition.CrateMap[newPlayerPosition]) return;

            // We have a valid player start position
            Bitmap partialMoveMap = MapAnalysis.GenerateMoveMap(StaticAnalysis.BoundryMap, endposition.CrateMap, oldPlayerPosition);
            endposition.MoveMap = endposition.MoveMap.BitwiseOR(partialMoveMap);
        }

        /// <summary>
        /// Is the node a solution
        /// </summary>
        /// <param name="node"></param>
        /// <returns></returns>
        public override bool IsSolution(INode<SolverNode> node)
        {
            return node.Data.Status == SolverNodeStates.Solution || node.Data.Status == SolverNodeStates.SolutionChain;
        }

        /// <summary>
        /// Evaluate the current node
        /// </summary>
        /// <param name="node"></param>
        /// <returns></returns>
        public override EvalStatus EvaluateState(INode<SolverNode> node)
        {
            controller.Stats.Nodes.AddMeasure(1f);
            controller.Stats.NodesRev.AddMeasure(1f);
            controller.Stats.NodesPerSecond.AddMeasure(1f);

            // Check if this is a solution
            if (node.Data.CrateMap.Equals(StaticAnalysis.InitialCrateMap))
            {
                // Player position must be inside the initial move map
                if (StaticAnalysis.InitialMoveMap[node.Data.PlayerPosition])
                {
                    controller.DebugReport.Append("Node {0}: Found a solution using only the reverse solver.", node.Data.NodeID);

                    // Solution found
                    node.Data.Status = SolverNodeStates.Solution;
                    node.Data.IsStateEvaluated = true;
                    node.Data.IsChildrenEvaluated = true;

                    MarkEvalCompelete(node);

                    // Itterate back to root, marking the path
                    List<TreeNode<SolverNode>> solutionPath = node.Data.TreeNode.GetPathToRoot();
                    solutionPath.ForEach(delegate(TreeNode<SolverNode> item) { item.Data.Status = SolverNodeStates.SolutionPath; });
                    node.Data.Status = SolverNodeStates.Solution;

                    return EvalStatus.CompleteSolution;
                }
                else
                {
                    controller.DebugReport.Append("Node {0}: Found a near solution using only the reverse solver, but the player position was incorrect", node.Data.NodeID);
                }
            }

            // Build the players move map
            if (node.Data.MoveMap == null)
            {
                // Generate MoveMap
                node.Data.MoveMap = MapAnalysis.GenerateMoveMap(StaticAnalysis.BoundryMap, node.Data.CrateMap, node.Data.PlayerPosition);
            }

            node.Data.IsStateEvaluated = true;

            

            // Check to chain match (forward and reverse)
            if (controller.CheckChainForward(node.Data))
            {
                return EvalStatus.CompleteSolution;
            }

            // Check for duplicates
            if (CheckDuplicate(node.Data) != null)
            {
                controller.Stats.Duplicates.Increment();

                node.Data.Status = SolverNodeStates.Duplicate;
                node.Data.IsStateEvaluated = true;
                node.Data.IsChildrenEvaluated = true;

                MarkEvalCompelete(node);

                // Remove duplicate from tree
                node.Data.TreeNode.Parent.RemoveChild(node.Data);

                // Exit
                return EvalStatus.InProgress;
            }
            else
            {
                cachedNodes.Add(node.Data);

                node.Data.IsStateEvaluated = true;
                return EvalStatus.InProgress;
            }
        }

        /// <summary>
        /// Evaluate all child nodes
        /// </summary>
        /// <param name="node"></param>
        /// <returns></returns>
        public override void EvaluateChildren(INode<SolverNode> node)
        {
            SolverNode data = node.Data;
            SizeInt mapSize = data.MoveMap.Size;

            // Find all crate pulls
            int pulls = 0;
            for (int cy=0; cy<mapSize.Y; cy++)
                for (int cx=0; cx<mapSize.X;cx++)
                {
                    VectorInt playerPosition = new VectorInt(cx, cy);
                    if (data.MoveMap[playerPosition])
                    {
                        pulls += CheckPull(data, playerPosition, Direction.Up);
                        pulls += CheckPull(data, playerPosition, Direction.Down);
                        pulls += CheckPull(data, playerPosition, Direction.Left);
                        pulls += CheckPull(data, playerPosition, Direction.Right);
                    }
                }

            if (pulls == 0)
            {
                // Dead, no further moves
                data.Status = SolverNodeStates.DeadChildren;
            }

            node.Data.Weighting = CalcWeighting(node.Data);

            data.IsChildrenEvaluated = true;
            MarkEvalCompelete(node);
        }

        /// <summary>
        /// For a given node (normally a solution) build the player moves
        /// </summary>
        /// <param name="reverse"></param>
        /// <returns></returns>
        public Path BuildPath(SolverNode reverse)
        {
            List<TreeNode<SolverNode>> nodePath = reverse.TreeNode.GetPathToRoot();


            Path result = null;

            int startIndex = 0;
            VectorInt startPos;
            
            if (nodePath[0].Data.ChainSolutionLink == null)
            {
                // Start at the root
                result = new Path(controller.Map.Player);

                // Fill in the gap between the player position and the first move node
                
                VectorInt firstMove =  nodePath[0].Data.PlayerPosition;

                Bitmap boundry = StaticAnalysis.InitialCrateMap.BitwiseOR(StaticAnalysis.BoundryMap);

                // Find all positble moves for the player
                FloodFillStrategy floodFill = new FloodFillStrategy(boundry, controller.Map.Player);
                Evaluator<LocationNode> eval = new Evaluator<LocationNode>();
                eval.Evaluate(floodFill);

                List<LocationNode> shortestPath = floodFill.GetShortestPath(firstMove);
                if (shortestPath == null) throw new InvalidOperationException("Map intial player position must be on the path.");

                foreach (LocationNode locationNode in shortestPath)
                {
                    result.Add(locationNode.Location);
                }
                startPos = nodePath[0].Data.PlayerPositionBeforeMove;
                startIndex = 1;
            }
            else
            {
                result = new Path(nodePath[0].Data.ChainSolutionLink.PlayerPosition);
                startPos = result.StartLocation;
            }
                

            
            
            for (int cc = startIndex; cc < nodePath.Count-1; cc++)
            {
                SolverNode node = nodePath[cc].Data;

                Bitmap boundry = node.CrateMap.BitwiseOR(StaticAnalysis.BoundryMap);

                // Find all positble moves for the player
                FloodFillStrategy floodFill = new FloodFillStrategy(boundry, startPos);
                Evaluator<LocationNode> eval = new Evaluator<LocationNode>();
                eval.Evaluate(floodFill);

                VectorInt destPos = node.PlayerPosition;
                List<LocationNode> shortestPath = floodFill.GetShortestPath(destPos);
                if (shortestPath == null) throw new InvalidOperationException("New player position must be on the path. ");

                foreach (LocationNode locationNode in shortestPath)
                {
                    result.Add(locationNode.Location);
                }

                startPos = node.PlayerPositionBeforeMove;
                                
            }

            result.Add(VectorInt.Reverse(nodePath[nodePath.Count-2].Data.MoveDirection));

            return result;
        }

        /// <summary>
        /// Prefix nodes with R for reverse
        /// </summary>
        /// <returns></returns>
        protected override string GetNextNodeID()
        {
            return "R"+base.GetNextNodeID();
        }

        /// <summary>
        /// Check if a crate can be pulled
        /// </summary>
        /// <param name="solverNode"></param>
        /// <param name="playerPosition"></param>
        /// <param name="pullDirection"></param>
        /// <returns></returns>
        private int CheckPull(SolverNode solverNode, VectorInt playerPosition, Direction pullDirection)
        {
            VectorInt oldCratePosition = playerPosition.Offset(VectorInt.Reverse(pullDirection));
            VectorInt newCratePosition = playerPosition;
            VectorInt newPlayerPosition = playerPosition.Offset(pullDirection);

            // Must be a crate to pull
            if (!solverNode.CrateMap[oldCratePosition]) return 0;

            // Player must move into a space
            if (StaticAnalysis.BoundryMap[newPlayerPosition]) return 0;
            if (solverNode.CrateMap[newPlayerPosition]) return 0;

            // Ok, we have a valid pull
            SolverNode newChild = new SolverNode();
            AddNodeForEval(solverNode.TreeNode, newChild); // so we can get parent weighting

            newChild.CrateMap = new Bitmap(solverNode.CrateMap);
            newChild.CrateMap[oldCratePosition] = false;
            newChild.CrateMap[newCratePosition] = true;       // Old player pos is the new crate position
            newChild.PlayerPosition = newPlayerPosition;
            newChild.MoveMap = null;
            newChild.IsStateEvaluated = false;
            newChild.IsChildrenEvaluated = false;
            newChild.MoveDirection = pullDirection;
            newChild.Weighting = CalcWeighting(newChild);

            
            return 1;
        }

        /// <summary>
        /// Weighting function, this is the basis for selecting the next node to evaluate
        /// </summary>
        /// <param name="solverNode"></param>
        /// <returns></returns>
        private float CalcWeighting(SolverNode solverNode)
        {
            if (false)
            {
                // DEPTH only
                if (solverNode.TreeNode != null)
                {
                    return 100 - solverNode.TreeNode.Depth;
                }
                return 0;
            }
            else
            {

                // Start with crate map weighting
                float weighting = new Matrix(solverNode.CrateMap, 1f).Multiply(StaticAnalysis.StaticForwardCrateWeighting).Total();

                return weighting;
            }
            
            return 0;
        }


        /// <summary>
        /// Check to see if this node already exists in the search tree
        /// </summary>
        /// <param name="node"></param>
        /// <returns></returns>
        public SolverNode CheckDuplicate(SolverNode node)
        {
            return cachedNodes.GetMatchFirst(node);
        }
      

        protected override void AddNodeForEval(INode<SolverNode> CurrentNode, SolverNode NewChild)
        {
            base.AddNodeForEval(CurrentNode, NewChild);
        }

        protected override void MarkEvalCompelete(INode<SolverNode> CurrentNode)
        {
            base.MarkEvalCompelete(CurrentNode);
        }

        protected override void RemoveRedundantNode(INode<SolverNode> CurrentNode)
        {
            // Remove from cache
            cachedNodes.Remove(CurrentNode.Data);
        }

        private SolverController controller;
        private SolverNodeCollection cachedNodes;   

       
    }
}
www.java2v.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.