DHParametersHelper.cs :  » PDF » iTextSharp » Org » BouncyCastle » Crypto » Generators » C# / CSharp Open Source

Home
C# / CSharp Open Source
1.2.6.4 mono .net core
2.2.6.4 mono core
3.Aspect Oriented Frameworks
4.Bloggers
5.Build Systems
6.Business Application
7.Charting Reporting Tools
8.Chat Servers
9.Code Coverage Tools
10.Content Management Systems CMS
11.CRM ERP
12.Database
13.Development
14.Email
15.Forum
16.Game
17.GIS
18.GUI
19.IDEs
20.Installers Generators
21.Inversion of Control Dependency Injection
22.Issue Tracking
23.Logging Tools
24.Message
25.Mobile
26.Network Clients
27.Network Servers
28.Office
29.PDF
30.Persistence Frameworks
31.Portals
32.Profilers
33.Project Management
34.RSS RDF
35.Rule Engines
36.Script
37.Search Engines
38.Sound Audio
39.Source Control
40.SQL Clients
41.Template Engines
42.Testing
43.UML
44.Web Frameworks
45.Web Service
46.Web Testing
47.Wiki Engines
48.Windows Presentation Foundation
49.Workflows
50.XML Parsers
C# / C Sharp
C# / C Sharp by API
C# / CSharp Tutorial
C# / CSharp Open Source » PDF » iTextSharp 
iTextSharp » Org » BouncyCastle » Crypto » Generators » DHParametersHelper.cs
using System;

using Org.BouncyCastle.Math;
using Org.BouncyCastle.Security;
using Org.BouncyCastle.Utilities;

namespace Org.BouncyCastle.Crypto.Generators{
  internal class DHParametersHelper
  {
    // The primes b/w 2 and ~2^10
    /*
        3   5   7   11  13  17  19  23  29
      31  37  41  43  47  53  59  61  67  71
      73  79  83  89  97  101 103 107 109 113
      127 131 137 139 149 151 157 163 167 173
      179 181 191 193 197 199 211 223 227 229
      233 239 241 251 257 263 269 271 277 281
      283 293 307 311 313 317 331 337 347 349
      353 359 367 373 379 383 389 397 401 409
      419 421 431 433 439 443 449 457 461 463
      467 479 487 491 499 503 509 521 523 541
      547 557 563 569 571 577 587 593 599 601
      607 613 617 619 631 641 643 647 653 659
      661 673 677 683 691 701 709 719 727 733
      739 743 751 757 761 769 773 787 797 809
      811 821 823 827 829 839 853 857 859 863
      877 881 883 887 907 911 919 929 937 941
      947 953 967 971 977 983 991 997
      1009 1013 1019 1021 1031
    */

    // Each list has a product < 2^31
    private static readonly int[][] primeLists = new int[][]
    {
      new int[]{ 3, 5, 7, 11, 13, 17, 19, 23 },
      new int[]{ 29, 31, 37, 41, 43 },
      new int[]{ 47, 53, 59, 61, 67 },
      new int[]{ 71, 73, 79, 83 },
      new int[]{ 89, 97, 101, 103 },

      new int[]{ 107, 109, 113, 127 },
      new int[]{ 131, 137, 139, 149 },
      new int[]{ 151, 157, 163, 167 },
      new int[]{ 173, 179, 181, 191 },
      new int[]{ 193, 197, 199, 211 },

      new int[]{ 223, 227, 229 },
      new int[]{ 233, 239, 241 },
      new int[]{ 251, 257, 263 },
      new int[]{ 269, 271, 277 },
      new int[]{ 281, 283, 293 },

      new int[]{ 307, 311, 313 },
      new int[]{ 317, 331, 337 },
      new int[]{ 347, 349, 353 },
      new int[]{ 359, 367, 373 },
      new int[]{ 379, 383, 389 },

      new int[]{ 397, 401, 409 },
      new int[]{ 419, 421, 431 },
      new int[]{ 433, 439, 443 },
      new int[]{ 449, 457, 461 },
      new int[]{ 463, 467, 479 },

      new int[]{ 487, 491, 499 },
      new int[]{ 503, 509, 521 },
      new int[]{ 523, 541, 547 },
      new int[]{ 557, 563, 569 },
      new int[]{ 571, 577, 587 },

      new int[]{ 593, 599, 601 },
      new int[]{ 607, 613, 617 },
      new int[]{ 619, 631, 641 },
      new int[]{ 643, 647, 653 },
      new int[]{ 659, 661, 673 },

      new int[]{ 677, 683, 691 },
      new int[]{ 701, 709, 719 },
      new int[]{ 727, 733, 739 },
      new int[]{ 743, 751, 757 },
      new int[]{ 761, 769, 773 },

      new int[]{ 787, 797, 809 },
      new int[]{ 811, 821, 823 },
      new int[]{ 827, 829, 839 },
      new int[]{ 853, 857, 859 },
      new int[]{ 863, 877, 881 },

      new int[]{ 883, 887, 907 },
      new int[]{ 911, 919, 929 },
      new int[]{ 937, 941, 947 },
      new int[]{ 953, 967, 971 },
      new int[]{ 977, 983, 991 },

      new int[]{ 997, 1009, 1013 },
      new int[]{ 1019, 1021, 1031 },
    };

    private static readonly BigInteger Six = BigInteger.ValueOf(6);

    private static readonly int[] primeProducts;
    private static readonly BigInteger[] PrimeProducts;

    static DHParametersHelper()
    {
      primeProducts = new int[primeLists.Length];
      PrimeProducts = new BigInteger[primeLists.Length];

      for (int i = 0; i < primeLists.Length; ++i)
      {
        int[] primeList = primeLists[i];
        int product = 1;
        for (int j = 0; j < primeList.Length; ++j)
        {
          product *= primeList[j];
        }
        primeProducts[i] = product;
        PrimeProducts[i] = BigInteger.ValueOf(product);
      }
    }

    // Finds a pair of prime BigInteger's {p, q: p = 2q + 1}
    internal static BigInteger[] GenerateSafePrimes(
      int             size,
      int             certainty,
      SecureRandom    random)
    {
      BigInteger p, q;
      int qLength = size - 1;

      if (size <= 32)
      {
        for (;;)
        {
          q = new BigInteger(qLength, 2, random);

          p = q.ShiftLeft(1).Add(BigInteger.One);

          if (p.IsProbablePrime(certainty)
            && (certainty <= 2 || q.IsProbablePrime(certainty)))
              break;
        }
      }
      else
      {
        // Note: Modified from Java version for speed
        for (;;)
        {
          q = new BigInteger(qLength, 0, random);

        retry:
          for (int i = 0; i < primeLists.Length; ++i)
          {
            int test = q.Remainder(PrimeProducts[i]).IntValue;

            if (i == 0)
            {
              int rem3 = test % 3;
              if (rem3 != 2)
              {
                int diff = 2 * rem3 + 2;
                q = q.Add(BigInteger.ValueOf(diff));
                test = (test + diff) % primeProducts[i];
              }
            }

            int[] primeList = primeLists[i];
            for (int j = 0; j < primeList.Length; ++j)
            {
              int prime = primeList[j];
              int qRem = test % prime;
              if (qRem == 0 || qRem == (prime >> 1))
              {
                q = q.Add(Six);
                goto retry;
              }
            }
          }


          if (q.BitLength != qLength)
            continue;

          if (!q.RabinMillerTest(2, random))
            continue;

          p = q.ShiftLeft(1).Add(BigInteger.One);

          if (p.RabinMillerTest(certainty, random)
            && (certainty <= 2 || q.RabinMillerTest(certainty - 2, random)))
            break;
        }
      }

      return new BigInteger[] { p, q };
    }

    // Select a high order element of the multiplicative group Zp*
    // p and q must be s.t. p = 2*q + 1, where p and q are prime
    internal static BigInteger SelectGenerator(
      BigInteger      p,
      BigInteger      q,
      SecureRandom    random)
    {
      BigInteger pMinusTwo = p.Subtract(BigInteger.Two);
      BigInteger g;

      // Handbook of Applied Cryptography 4.86
      do
      {
        g = BigIntegers.CreateRandomInRange(BigInteger.Two, pMinusTwo, random);
      }
      while (g.ModPow(BigInteger.Two, p).Equals(BigInteger.One)
        || g.ModPow(q, p).Equals(BigInteger.One));

/*
      // RFC 2631 2.1.1 (and see Handbook of Applied Cryptography 4.81)
      do
      {
        BigInteger h = CreateInRange(BigInteger.Two, pMinusTwo, random);

        g = h.ModPow(BigInteger.Two, p);
      }
      while (g.Equals(BigInteger.One));
*/

      return g;
    }
  }
}
www.java2v.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.