using System;
using Org.BouncyCastle.Crypto.Parameters;
using Org.BouncyCastle.Crypto.Digests;
using Org.BouncyCastle.Math;
using Org.BouncyCastle.Security;
namespace Org.BouncyCastle.Crypto.Generators{
/**
* Generate suitable parameters for DSA, in line with FIPS 186-2.
*/
public class DsaParametersGenerator
{
private int size;
private int certainty;
private SecureRandom random;
/**
* initialise the key generator.
*
* @param size size of the key (range 2^512 -> 2^1024 - 64 bit increments)
* @param certainty measure of robustness of prime (for FIPS 186-2 compliance this should be at least 80).
* @param random random byte source.
*/
public void Init(
int size,
int certainty,
SecureRandom random)
{
if (!IsValidDsaStrength(size))
throw new ArgumentException("size must be from 512 - 1024 and a multiple of 64", "size");
this.size = size;
this.certainty = certainty;
this.random = random;
}
/**
* add value to b, returning the result in a. The a value is treated
* as a BigInteger of length (a.Length * 8) bits. The result is
* modulo 2^a.Length in case of overflow.
*/
private static void Add(
byte[] a,
byte[] b,
int value)
{
int x = (b[b.Length - 1] & 0xff) + value;
a[b.Length - 1] = (byte)x;
x = (int) ((uint) x >>8);
for (int i = b.Length - 2; i >= 0; i--)
{
x += (b[i] & 0xff);
a[i] = (byte)x;
x = (int) ((uint) x >>8);
}
}
/**
* which Generates the p and g values from the given parameters,
* returning the DsaParameters object.
* <p>
* Note: can take a while...</p>
*/
public DsaParameters GenerateParameters()
{
byte[] seed = new byte[20];
byte[] part1 = new byte[20];
byte[] part2 = new byte[20];
byte[] u = new byte[20];
Sha1Digest sha1 = new Sha1Digest();
int n = (size - 1) / 160;
byte[] w = new byte[size / 8];
BigInteger q = null, p = null, g = null;
int counter = 0;
bool primesFound = false;
while (!primesFound)
{
do
{
random.NextBytes(seed);
sha1.BlockUpdate(seed, 0, seed.Length);
sha1.DoFinal(part1, 0);
Array.Copy(seed, 0, part2, 0, seed.Length);
Add(part2, seed, 1);
sha1.BlockUpdate(part2, 0, part2.Length);
sha1.DoFinal(part2, 0);
for (int i = 0; i != u.Length; i++)
{
u[i] = (byte)(part1[i] ^ part2[i]);
}
u[0] |= (byte)0x80;
u[19] |= (byte)0x01;
q = new BigInteger(1, u);
}
while (!q.IsProbablePrime(certainty));
counter = 0;
int offset = 2;
while (counter < 4096)
{
for (int k = 0; k < n; k++)
{
Add(part1, seed, offset + k);
sha1.BlockUpdate(part1, 0, part1.Length);
sha1.DoFinal(part1, 0);
Array.Copy(part1, 0, w, w.Length - (k + 1) * part1.Length, part1.Length);
}
Add(part1, seed, offset + n);
sha1.BlockUpdate(part1, 0, part1.Length);
sha1.DoFinal(part1, 0);
Array.Copy(part1, part1.Length - ((w.Length - (n) * part1.Length)), w, 0, w.Length - n * part1.Length);
w[0] |= (byte)0x80;
BigInteger x = new BigInteger(1, w);
BigInteger c = x.Mod(q.ShiftLeft(1));
p = x.Subtract(c.Subtract(BigInteger.One));
if (p.TestBit(size - 1))
{
if (p.IsProbablePrime(certainty))
{
primesFound = true;
break;
}
}
counter += 1;
offset += n + 1;
}
}
//
// calculate the generator g
//
BigInteger pMinusOneOverQ = p.Subtract(BigInteger.One).Divide(q);
for (;;)
{
BigInteger h = new BigInteger(size, random);
if (h.CompareTo(BigInteger.One) <= 0 || h.CompareTo(p.Subtract(BigInteger.One)) >= 0)
{
continue;
}
g = h.ModPow(pMinusOneOverQ, p);
if (g.CompareTo(BigInteger.One) <= 0)
{
continue;
}
break;
}
return new DsaParameters(p, q, g, new DsaValidationParameters(seed, counter));
}
private static bool IsValidDsaStrength(
int strength)
{
return strength >= 512 && strength <= 1024 && strength % 64 == 0;
}
}
}
|