using System;
using Org.BouncyCastle.Crypto;
using Org.BouncyCastle.Crypto.Parameters;
using Org.BouncyCastle.Math;
namespace Org.BouncyCastle.Crypto.Generators{
/**
* an RSA key pair generator.
*/
public class RsaKeyPairGenerator
: IAsymmetricCipherKeyPairGenerator
{
private static readonly BigInteger DefaultPublicExponent = BigInteger.ValueOf(0x10001);
private const int DefaultTests = 12;
private RsaKeyGenerationParameters param;
public void Init(
KeyGenerationParameters parameters)
{
if (parameters is RsaKeyGenerationParameters)
{
this.param = (RsaKeyGenerationParameters)parameters;
}
else
{
this.param = new RsaKeyGenerationParameters(
DefaultPublicExponent, parameters.Random, parameters.Strength, DefaultTests);
}
}
public AsymmetricCipherKeyPair GenerateKeyPair()
{
BigInteger p, q, n, d, e, pSub1, qSub1, phi;
//
// p and q values should have a length of half the strength in bits
//
int strength = param.Strength;
int pbitlength = (strength + 1) / 2;
int qbitlength = (strength - pbitlength);
int mindiffbits = strength / 3;
e = param.PublicExponent;
// TODO Consider generating safe primes for p, q (see DHParametersHelper.generateSafePrimes)
// (then p-1 and q-1 will not consist of only small factors - see "Pollard's algorithm")
//
// Generate p, prime and (p-1) relatively prime to e
//
for (;;)
{
p = new BigInteger(pbitlength, 1, param.Random);
if (p.Mod(e).Equals(BigInteger.One))
continue;
if (!p.IsProbablePrime(param.Certainty))
continue;
if (e.Gcd(p.Subtract(BigInteger.One)).Equals(BigInteger.One))
break;
}
//
// Generate a modulus of the required length
//
for (;;)
{
// Generate q, prime and (q-1) relatively prime to e,
// and not equal to p
//
for (;;)
{
q = new BigInteger(qbitlength, 1, param.Random);
if (q.Subtract(p).Abs().BitLength < mindiffbits)
continue;
if (q.Mod(e).Equals(BigInteger.One))
continue;
if (!q.IsProbablePrime(param.Certainty))
continue;
if (e.Gcd(q.Subtract(BigInteger.One)).Equals(BigInteger.One))
break;
}
//
// calculate the modulus
//
n = p.Multiply(q);
if (n.BitLength == param.Strength)
break;
//
// if we Get here our primes aren't big enough, make the largest
// of the two p and try again
//
p = p.Max(q);
}
if (p.CompareTo(q) < 0)
{
phi = p;
p = q;
q = phi;
}
pSub1 = p.Subtract(BigInteger.One);
qSub1 = q.Subtract(BigInteger.One);
phi = pSub1.Multiply(qSub1);
//
// calculate the private exponent
//
d = e.ModInverse(phi);
//
// calculate the CRT factors
//
BigInteger dP, dQ, qInv;
dP = d.Remainder(pSub1);
dQ = d.Remainder(qSub1);
qInv = q.ModInverse(p);
return new AsymmetricCipherKeyPair(
new RsaKeyParameters(false, n, e),
new RsaPrivateCrtKeyParameters(n, e, d, p, q, dP, dQ, qInv));
}
}
}
|