OrderedTree.cs :  » PDF » iTextSharp » System » util » collections » C# / CSharp Open Source

Home
C# / CSharp Open Source
1.2.6.4 mono .net core
2.2.6.4 mono core
3.Aspect Oriented Frameworks
4.Bloggers
5.Build Systems
6.Business Application
7.Charting Reporting Tools
8.Chat Servers
9.Code Coverage Tools
10.Content Management Systems CMS
11.CRM ERP
12.Database
13.Development
14.Email
15.Forum
16.Game
17.GIS
18.GUI
19.IDEs
20.Installers Generators
21.Inversion of Control Dependency Injection
22.Issue Tracking
23.Logging Tools
24.Message
25.Mobile
26.Network Clients
27.Network Servers
28.Office
29.PDF
30.Persistence Frameworks
31.Portals
32.Profilers
33.Project Management
34.RSS RDF
35.Rule Engines
36.Script
37.Search Engines
38.Sound Audio
39.Source Control
40.SQL Clients
41.Template Engines
42.Testing
43.UML
44.Web Frameworks
45.Web Service
46.Web Testing
47.Wiki Engines
48.Windows Presentation Foundation
49.Workflows
50.XML Parsers
C# / C Sharp
C# / C Sharp by API
C# / CSharp Tutorial
C# / CSharp Open Source » PDF » iTextSharp 
iTextSharp » System » util » collections » OrderedTree.cs
using System.Collections;
using System.Text;
using System;

/*
 * $Id: OrderedTree.cs 106 2009-12-07 12:23:50Z psoares33 $
 *
 * This file is part of the iText project.
 * Copyright (c) 1998-2009 1T3XT BVBA
 * Authors: Bruno Lowagie, Paulo Soares, et al.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU Affero General Public License version 3
 * as published by the Free Software Foundation with the addition of the
 * following permission added to Section 15 as permitted in Section 7(a):
 * FOR ANY PART OF THE COVERED WORK IN WHICH THE COPYRIGHT IS OWNED BY 1T3XT,
 * 1T3XT DISCLAIMS THE WARRANTY OF NON INFRINGEMENT OF THIRD PARTY RIGHTS.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
 * or FITNESS FOR A PARTICULAR PURPOSE.
 * See the GNU Affero General Public License for more details.
 * You should have received a copy of the GNU Affero General Public License
 * along with this program; if not, see http://www.gnu.org/licenses or write to
 * the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
 * Boston, MA, 02110-1301 USA, or download the license from the following URL:
 * http://itextpdf.com/terms-of-use/
 *
 * The interactive user interfaces in modified source and object code versions
 * of this program must display Appropriate Legal Notices, as required under
 * Section 5 of the GNU Affero General Public License.
 *
 * In accordance with Section 7(b) of the GNU Affero General Public License,
 * you must retain the producer line in every PDF that is created or manipulated
 * 
namespace System.util.collections{
    public class OrderedTree {
        // the number of nodes contained in the tree
        private int intCount;
        // the tree
        private OrderedTreeNode rbTree;
        // sentinelNode is convenient way of indicating a leaf node.
        private OrderedTreeNode sentinelNode;          
        // the node that was last found; used to optimize searches
        private OrderedTreeNode lastNodeFound;          

        //static OrderedTree() {
        //    // set up the sentinel node. the sentinel node is the key to a successfull
        //    // implementation and for understanding the red-black tree properties.
        //    sentinelNode = new OrderedTreeNode();
        //    sentinelNode.Left = sentinelNode.Right = sentinelNode;
        //    sentinelNode.Parent = null;
        //    sentinelNode.Color = OrderedTreeNode.BLACK;
        //}

        public OrderedTree() {
            // set up the sentinel node. the sentinel node is the key to a successfull
            // implementation and for understanding the red-black tree properties.
            sentinelNode = new OrderedTreeNode();
            sentinelNode.Left = sentinelNode.Right = sentinelNode;
            sentinelNode.Parent = null;
            sentinelNode.Color = OrderedTreeNode.BLACK;
            rbTree = sentinelNode;
            lastNodeFound = sentinelNode;
        }
        
        public object this[IComparable key] {
            get {
                return GetData(key);
            }
            set {
                if(key == null)
                    throw new ArgumentNullException("Key is null");
                
                // traverse tree - find where node belongs
                int result = 0;
                // create new node
                OrderedTreeNode node = new OrderedTreeNode();
                OrderedTreeNode temp = rbTree; // grab the rbTree node of the tree

                while(temp != sentinelNode) {
                    // find Parent
                    node.Parent = temp;
                    result = key.CompareTo(temp.Key);
                    if(result == 0) {
                        lastNodeFound = temp;
                        temp.Data = value;
                        return;
                    }
                    if(result > 0)
                        temp = temp.Right;
                    else
                        temp = temp.Left;
                }
                
                // setup node
                node.Key = key;
                node.Data = value;
                node.Left = sentinelNode;
                node.Right = sentinelNode;

                // insert node into tree starting at parent's location
                if(node.Parent != null) {
                    result = node.Key.CompareTo(node.Parent.Key);
                    if(result > 0)
                        node.Parent.Right = node;
                    else
                        node.Parent.Left = node;
                }
                else
                    rbTree = node; // first node added

                RestoreAfterInsert(node); // restore red-black properities

                lastNodeFound = node;
                
                intCount = intCount + 1;
            }
        }
        
        ///<summary>
        /// Add
        /// args: ByVal key As IComparable, ByVal data As Object
        /// key is object that implements IComparable interface
        /// performance tip: change to use use int type (such as the hashcode)
        ///</summary>
        public void Add(IComparable key, object data) {
            if(key == null)
                throw(new ArgumentNullException("Key is null"));
            
            // traverse tree - find where node belongs
            int result = 0;
            // create new node
            OrderedTreeNode node = new OrderedTreeNode();
            OrderedTreeNode temp = rbTree; // grab the rbTree node of the tree

            while(temp != sentinelNode) {
                // find Parent
                node.Parent = temp;
                result = key.CompareTo(temp.Key);
                if(result == 0)
                    throw new ArgumentException("Key duplicated");
                if(result > 0)
                    temp = temp.Right;
                else
                    temp = temp.Left;
            }
            
            // setup node
            node.Key = key;
            node.Data = data;
            node.Left = sentinelNode;
            node.Right = sentinelNode;

            // insert node into tree starting at parent's location
            if(node.Parent != null) {
                result = node.Key.CompareTo(node.Parent.Key);
                if(result > 0)
                    node.Parent.Right = node;
                else
                    node.Parent.Left = node;
            }
            else
                rbTree = node; // first node added

            RestoreAfterInsert(node); // restore red-black properities

            lastNodeFound = node;
            
            intCount = intCount + 1;
        }
        ///<summary>
        /// RestoreAfterInsert
        /// Additions to red-black trees usually destroy the red-black 
        /// properties. Examine the tree and restore. Rotations are normally 
        /// required to restore it
        ///</summary>
        private void RestoreAfterInsert(OrderedTreeNode x) {   
            // x and y are used as variable names for brevity, in a more formal
            // implementation, you should probably change the names

            OrderedTreeNode y;

            // maintain red-black tree properties after adding x
            while(x != rbTree && x.Parent.Color == OrderedTreeNode.RED) {
                // Parent node is .Colored red; 
                if(x.Parent == x.Parent.Parent.Left) { // determine traversal path         
                                                        // is it on the Left or Right subtree?
                    y = x.Parent.Parent.Right; // get uncle
                    if(y!= null && y.Color == OrderedTreeNode.RED) {
                        // uncle is red; change x's Parent and uncle to black
                        x.Parent.Color = OrderedTreeNode.BLACK;
                        y.Color = OrderedTreeNode.BLACK;
                        // grandparent must be red. Why? Every red node that is not 
                        // a leaf has only black children 
                        x.Parent.Parent.Color = OrderedTreeNode.RED; 
                        x = x.Parent.Parent; // continue loop with grandparent
                    }   
                    else {
                        // uncle is black; determine if x is greater than Parent
                        if(x == x.Parent.Right) { 
                            // yes, x is greater than Parent; rotate Left
                            // make x a Left child
                            x = x.Parent;
                            RotateLeft(x);
                        }
                        // no, x is less than Parent
                        x.Parent.Color = OrderedTreeNode.BLACK; // make Parent black
                        x.Parent.Parent.Color = OrderedTreeNode.RED; // make grandparent black
                        RotateRight(x.Parent.Parent); // rotate right
                    }
                }
                else {
                    // x's Parent is on the Right subtree
                    // this code is the same as above with "Left" and "Right" swapped
                    y = x.Parent.Parent.Left;
                    if(y!= null && y.Color == OrderedTreeNode.RED) {
                        x.Parent.Color = OrderedTreeNode.BLACK;
                        y.Color = OrderedTreeNode.BLACK;
                        x.Parent.Parent.Color = OrderedTreeNode.RED;
                        x = x.Parent.Parent;
                    }
                    else {
                        if(x == x.Parent.Left) {
                            x = x.Parent;
                            RotateRight(x);
                        }
                        x.Parent.Color = OrderedTreeNode.BLACK;
                        x.Parent.Parent.Color = OrderedTreeNode.RED;
                        RotateLeft(x.Parent.Parent);
                    }
                }                                                                                                                   
            }
            rbTree.Color = OrderedTreeNode.BLACK; // rbTree should always be black
        }
        
        ///<summary>
        /// RotateLeft
        /// Rebalance the tree by rotating the nodes to the left
        ///</summary>
        public void RotateLeft(OrderedTreeNode x) {
            // pushing node x down and to the Left to balance the tree. x's Right child (y)
            // replaces x (since y > x), and y's Left child becomes x's Right child 
            // (since it's < y but > x).
            
            OrderedTreeNode y = x.Right; // get x's Right node, this becomes y

            // set x's Right link
            x.Right = y.Left; // y's Left child's becomes x's Right child

            // modify parents
            if(y.Left != sentinelNode) 
                y.Left.Parent = x; // sets y's Left Parent to x

            if(y != sentinelNode)
                y.Parent = x.Parent; // set y's Parent to x's Parent

            if(x.Parent != null) {      
                // determine which side of it's Parent x was on
                if(x == x.Parent.Left)          
                    x.Parent.Left = y; // set Left Parent to y
                else
                    x.Parent.Right = y; // set Right Parent to y
            } 
            else 
                rbTree = y; // at rbTree, set it to y

            // link x and y 
            y.Left = x; // put x on y's Left 
            if(x != sentinelNode) // set y as x's Parent
                x.Parent = y;       
        }
        ///<summary>
        /// RotateRight
        /// Rebalance the tree by rotating the nodes to the right
        ///</summary>
        public void RotateRight(OrderedTreeNode x) {
            // pushing node x down and to the Right to balance the tree. x's Left child (y)
            // replaces x (since x < y), and y's Right child becomes x's Left child 
            // (since it's < x but > y).
            
            OrderedTreeNode y = x.Left; // get x's Left node, this becomes y

            // set x's Right link
            x.Left = y.Right; // y's Right child becomes x's Left child

            // modify parents
            if(y.Right != sentinelNode) 
                y.Right.Parent = x; // sets y's Right Parent to x

            if(y != sentinelNode)
                y.Parent = x.Parent; // set y's Parent to x's Parent

            if(x.Parent != null) { // null=rbTree, could also have used rbTree
                // determine which side of it's Parent x was on
                if(x == x.Parent.Right)         
                    x.Parent.Right = y; // set Right Parent to y
                else
                    x.Parent.Left = y; // set Left Parent to y
            } 
            else 
                rbTree = y; // at rbTree, set it to y

            // link x and y 
            y.Right = x; // put x on y's Right
            if(x != sentinelNode) // set y as x's Parent
                x.Parent = y;       
        }
        
        public bool ContainsKey(IComparable key) {
            OrderedTreeNode treeNode = rbTree; // begin at root
            int result = 0;
            // traverse tree until node is found
            while(treeNode != sentinelNode) {
                result = key.CompareTo(treeNode.Key);
                if(result == 0) {
                    lastNodeFound = treeNode;
                    return true;
                }
                if(result < 0)
                    treeNode = treeNode.Left;
                else
                    treeNode = treeNode.Right;
            }
            return false;
        }

        ///<summary>
        /// GetData
        /// Gets the data object associated with the specified key
        ///<summary>
        public object GetData(IComparable key) {
            if(key == null)
                throw new ArgumentNullException("Key is null");
            int result;
            
            OrderedTreeNode treeNode = rbTree; // begin at root
            
            // traverse tree until node is found
            while(treeNode != sentinelNode) {
                result = key.CompareTo(treeNode.Key);
                if(result == 0) {
                    lastNodeFound = treeNode;
                    return treeNode.Data;
                }
                if(result < 0)
                    treeNode = treeNode.Left;
                else
                    treeNode = treeNode.Right;
            }
            return null;
        }
        ///<summary>
        /// GetMinKey
        /// Returns the minimum key value
        ///<summary>
        public IComparable GetMinKey() {
            OrderedTreeNode treeNode = rbTree;
            
            if(treeNode == null || treeNode == sentinelNode)
                throw(new InvalidOperationException("Tree is empty"));
            
            // traverse to the extreme left to find the smallest key
            while(treeNode.Left != sentinelNode)
                treeNode = treeNode.Left;
            
            lastNodeFound = treeNode;
            
            return treeNode.Key;
            
        }
        ///<summary>
        /// GetMaxKey
        /// Returns the maximum key value
        ///<summary>
        public IComparable GetMaxKey() {
            OrderedTreeNode treeNode = rbTree;
            
            if(treeNode == null || treeNode == sentinelNode)
                throw(new InvalidOperationException("Tree is empty"));

            // traverse to the extreme right to find the largest key
            while(treeNode.Right != sentinelNode)
                treeNode = treeNode.Right;

            lastNodeFound = treeNode;

            return treeNode.Key;
            
        }
        ///<summary>
        /// GetMinValue
        /// Returns the object having the minimum key value
        ///<summary>
        public object GetMinValue() {
            return GetData(GetMinKey());
        }
        ///<summary>
        /// GetMaxValue
        /// Returns the object having the maximum key
        ///<summary>
        public object GetMaxValue() {
            return GetData(GetMaxKey());
        }
        ///<summary>
        /// GetEnumerator
        /// return an enumerator that returns the tree nodes in order
        ///<summary>
        public OrderedTreeEnumerator GetEnumerator() {
            // elements is simply a generic name to refer to the 
            // data objects the nodes contain
            return Elements(true);      
        }
        ///<summary>
        /// Keys
        /// if(ascending is true, the keys will be returned in ascending order, else
        /// the keys will be returned in descending order.
        ///<summary>
        public OrderedTreeEnumerator Keys {
            get {
                return KeyElements(true);
            }
        }
        public OrderedTreeEnumerator KeyElements(bool ascending) {
            return new OrderedTreeEnumerator(rbTree, true, ascending, sentinelNode);
        }
        ///<summary>
        /// Values
        /// Provided for .NET compatibility. 
        ///<summary>
        public OrderedTreeEnumerator Values {
            get {
                return Elements(true);
            }
        }
        ///<summary>
        /// Elements
        /// Returns an enumeration of the data objects.
        /// if(ascending is true, the objects will be returned in ascending order,
        /// else the objects will be returned in descending order.
        ///<summary>
        public OrderedTreeEnumerator Elements() {
            return Elements(true);
        }
        public OrderedTreeEnumerator Elements(bool ascending) {
            return new OrderedTreeEnumerator(rbTree, false, ascending, sentinelNode);
        }
        ///<summary>
        /// IsEmpty
        /// Is the tree empty?
        ///<summary>
        public bool IsEmpty() {
            return (rbTree == null || rbTree == sentinelNode);
        }
        ///<summary>
        /// Remove
        /// removes the key and data object (delete)
        ///<summary>
        public void Remove(IComparable key) {
            if(key == null)
                throw new ArgumentNullException("Key is null");
        
            // find node
            int result;
            OrderedTreeNode node;

            // see if node to be deleted was the last one found
            result = key.CompareTo(lastNodeFound.Key);
            if(result == 0)
                node = lastNodeFound;
            else {
                // not found, must search       
                node = rbTree;
                while(node != sentinelNode) {
                    result = key.CompareTo(node.Key);
                    if(result == 0)
                        break;
                    if(result < 0)
                        node = node.Left;
                    else
                        node = node.Right;
                }

                if(node == sentinelNode)
                    return; // key not found
            }

            Delete(node);
            
            intCount = intCount - 1;
        }
        ///<summary>
        /// Delete
        /// Delete a node from the tree and restore red black properties
        ///<summary>
        private void Delete(OrderedTreeNode z) {
            // A node to be deleted will be: 
            // 1. a leaf with no children
            // 2. have one child
            // 3. have two children
            // If the deleted node is red, the red black properties still hold.
            // If the deleted node is black, the tree needs rebalancing

            OrderedTreeNode x = new OrderedTreeNode(); // work node to contain the replacement node
            OrderedTreeNode y; // work node 

            // find the replacement node (the successor to x) - the node one with 
            // at *most* one child. 
            if(z.Left == sentinelNode || z.Right == sentinelNode) 
                y = z; // node has sentinel as a child
            else {
                // z has two children, find replacement node which will 
                // be the leftmost node greater than z
                y = z.Right; // traverse right subtree   
                while(y.Left != sentinelNode) // to find next node in sequence
                    y = y.Left;
            }

            // at this point, y contains the replacement node. it's content will be copied 
            // to the valules in the node to be deleted

            // x (y's only child) is the node that will be linked to y's old parent. 
            if(y.Left != sentinelNode)
                x = y.Left;                 
            else
                x = y.Right;                    

            // replace x's parent with y's parent and
            // link x to proper subtree in parent
            // this removes y from the chain
            x.Parent = y.Parent;
            if(y.Parent != null)
                if(y == y.Parent.Left)
                    y.Parent.Left = x;
                else
                    y.Parent.Right = x;
            else
                rbTree = x; // make x the root node

            // copy the values from y (the replacement node) to the node being deleted.
            // note: this effectively deletes the node. 
            if(y != z) {
                z.Key = y.Key;
                z.Data = y.Data;
            }

            if(y.Color == OrderedTreeNode.BLACK)
                RestoreAfterDelete(x);

            lastNodeFound = sentinelNode;
        }

        ///<summary>
        /// RestoreAfterDelete
        /// Deletions from red-black trees may destroy the red-black 
        /// properties. Examine the tree and restore. Rotations are normally 
        /// required to restore it
        ///</summary>
        private void RestoreAfterDelete(OrderedTreeNode x) {
            // maintain Red-Black tree balance after deleting node          

            OrderedTreeNode y;

            while(x != rbTree && x.Color == OrderedTreeNode.BLACK) {
                if(x == x.Parent.Left) { // determine sub tree from parent
                    y = x.Parent.Right; // y is x's sibling 
                    if(y.Color == OrderedTreeNode.RED) { 
                        // x is black, y is red - make both black and rotate
                        y.Color = OrderedTreeNode.BLACK;
                        x.Parent.Color = OrderedTreeNode.RED;
                        RotateLeft(x.Parent);
                        y = x.Parent.Right;
                    }
                    if(y.Left.Color == OrderedTreeNode.BLACK && 
                        y.Right.Color == OrderedTreeNode.BLACK) { 
                        // children are both black
                        y.Color = OrderedTreeNode.RED; // change parent to red
                        x = x.Parent; // move up the tree
                    } 
                    else {
                        if(y.Right.Color == OrderedTreeNode.BLACK) {
                            y.Left.Color = OrderedTreeNode.BLACK;
                            y.Color = OrderedTreeNode.RED;
                            RotateRight(y);
                            y = x.Parent.Right;
                        }
                        y.Color = x.Parent.Color;
                        x.Parent.Color = OrderedTreeNode.BLACK;
                        y.Right.Color = OrderedTreeNode.BLACK;
                        RotateLeft(x.Parent);
                        x = rbTree;
                    }
                } 
                else { 
                    // right subtree - same as code above with right and left swapped
                    y = x.Parent.Left;
                    if(y.Color == OrderedTreeNode.RED) {
                        y.Color = OrderedTreeNode.BLACK;
                        x.Parent.Color = OrderedTreeNode.RED;
                        RotateRight (x.Parent);
                        y = x.Parent.Left;
                    }
                    if(y.Right.Color == OrderedTreeNode.BLACK && 
                        y.Left.Color == OrderedTreeNode.BLACK) {
                        y.Color = OrderedTreeNode.RED;
                        x = x.Parent;
                    } 
                    else {
                        if(y.Left.Color == OrderedTreeNode.BLACK) {
                            y.Right.Color = OrderedTreeNode.BLACK;
                            y.Color = OrderedTreeNode.RED;
                            RotateLeft(y);
                            y = x.Parent.Left;
                        }
                        y.Color = x.Parent.Color;
                        x.Parent.Color = OrderedTreeNode.BLACK;
                        y.Left.Color = OrderedTreeNode.BLACK;
                        RotateRight(x.Parent);
                        x = rbTree;
                    }
                }
            }
            x.Color = OrderedTreeNode.BLACK;
        }
        
        ///<summary>
        /// RemoveMin
        /// removes the node with the minimum key
        ///<summary>
        public void RemoveMin() {
            if(rbTree == null || rbTree == sentinelNode)
                return;
            Remove(GetMinKey());
        }
        ///<summary>
        /// RemoveMax
        /// removes the node with the maximum key
        ///<summary>
        public void RemoveMax() {
            if(rbTree == null || rbTree == sentinelNode)
                return;
            Remove(GetMaxKey());
        }
        ///<summary>
        /// Clear
        /// Empties or clears the tree
        ///<summary>
        public void Clear () {
            rbTree = sentinelNode;
            intCount = 0;
        }

        public int Count {
            get {
                return intCount;
            }
        }
    }

    public class OrderedTreeEnumerator : IEnumerator {
        // the treap uses the stack to order the nodes
        private Stack stack;
        // return the keys
        private bool keys;
        // return in ascending order (true) or descending (false)
        private bool ascending;
        private OrderedTreeNode tnode;
        private OrderedTreeNode sentinelNode;
        bool pre = true;
        
        // key
        private IComparable ordKey;
        // the data or value associated with the key
        private object objValue;

        ///<summary>
        ///Key
        ///</summary>
        public IComparable Key {
            get {
                return ordKey;
            }
            
            set {
                ordKey = value;
            }
        }
        ///<summary>
        ///Data
        ///</summary>
        public object Value {
            get {
                return objValue;
            }
            
            set {
                objValue = value;
            }
        }
        
        private OrderedTreeEnumerator() {
        }
        ///<summary>
        /// Determine order, walk the tree and push the nodes onto the stack
        ///</summary>
        public OrderedTreeEnumerator(OrderedTreeNode tnode, bool keys, bool ascending, OrderedTreeNode sentinelNode) {
            this.sentinelNode = sentinelNode;
            stack = new Stack();
            this.keys = keys;
            this.ascending = ascending;
            this.tnode = tnode;
            Reset();            
        }

        public void Reset() {
            pre = true;
            stack.Clear();
            // use depth-first traversal to push nodes into stack
            // the lowest node will be at the top of the stack
            if(ascending) {
                // find the lowest node
                while(tnode != sentinelNode) {
                    stack.Push(tnode);
                    tnode = tnode.Left;
                }
            }
            else {
                // the highest node will be at top of stack
                while(tnode != sentinelNode) {
                    stack.Push(tnode);
                    tnode = tnode.Right;
                }
            }
        }

        public object Current {
            get {
                if (pre)
                    throw new InvalidOperationException("Current");
                return keys == true ? Key : Value;
            }
        }

        ///<summary>
        /// HasMoreElements
        ///</summary>
        public bool HasMoreElements() {
            return (stack.Count > 0);
        }
        ///<summary>
        /// NextElement
        ///</summary>
        public object NextElement() {
            if(stack.Count == 0)

                throw new InvalidOperationException("Element not found");
            
            // the top of stack will always have the next item
            // get top of stack but don't remove it as the next nodes in sequence
            // may be pushed onto the top
            // the stack will be popped after all the nodes have been returned
            OrderedTreeNode node = (OrderedTreeNode) stack.Peek(); //next node in sequence
            
            if(ascending) {
                if(node.Right == sentinelNode) {   
                    // yes, top node is lowest node in subtree - pop node off stack 
                    OrderedTreeNode tn = (OrderedTreeNode) stack.Pop();
                    // peek at right node's parent 
                    // get rid of it if it has already been used
                    while(HasMoreElements()&& ((OrderedTreeNode) stack.Peek()).Right == tn)
                        tn = (OrderedTreeNode) stack.Pop();
                }
                else {
                    // find the next items in the sequence
                    // traverse to left; find lowest and push onto stack
                    OrderedTreeNode tn = node.Right;
                    while(tn != sentinelNode) {
                        stack.Push(tn);
                        tn = tn.Left;
                    }
                }
            }
            else { // descending, same comments as above apply
                if(node.Left == sentinelNode) {
                    // walk the tree
                    OrderedTreeNode tn = (OrderedTreeNode) stack.Pop();
                    while(HasMoreElements() && ((OrderedTreeNode)stack.Peek()).Left == tn)
                        tn = (OrderedTreeNode) stack.Pop();
                }
                else {
                    // determine next node in sequence
                    // traverse to left subtree and find greatest node - push onto stack
                    OrderedTreeNode tn = node.Left;
                    while(tn != sentinelNode) {
                        stack.Push(tn);
                        tn = tn.Right;
                    }
                }
            }
            
            // the following is for .NET compatibility (see MoveNext())
            Key = node.Key;
            Value = node.Data;
            // ******** testing only ********

            return keys == true ? node.Key : node.Data;         
        }
        ///<summary>
        /// MoveNext
        /// For .NET compatibility
        ///</summary>
        public bool MoveNext() {
            if(HasMoreElements()) {
                NextElement();
                pre = false;
                return true;
            }
            pre = true;
            return false;
        }

        public OrderedTreeEnumerator GetEnumerator() {
            return this;
        }
    }

    public class OrderedTreeNode {
        // tree node colors
        public const bool RED = false;
        public const bool BLACK = true;

        // key provided by the calling class
        private IComparable ordKey;
        // the data or value associated with the key
        private object objData;
        // color - used to balance the tree
        private bool intColor;
        // left node 
        private OrderedTreeNode rbnLeft;
        // right node 
        private OrderedTreeNode rbnRight;
        // parent node 
        private OrderedTreeNode rbnParent;
        
        ///<summary>
        ///Key
        ///</summary>
        public IComparable Key {
            get {
                return ordKey;
            }
            
            set {
                ordKey = value;
            }
        }
        ///<summary>
        ///Data
        ///</summary>
        public object Data {
            get {
                return objData;
            }
            
            set {
                objData = value;
            }
        }
        ///<summary>
        ///Color
        ///</summary>
        public bool Color {
            get {
                return intColor;
            }
            
            set {
                intColor = value;
            }
        }
        ///<summary>
        ///Left
        ///</summary>
        public OrderedTreeNode Left {
            get {
                return rbnLeft;
            }
            
            set {
                rbnLeft = value;
            }
        }
        ///<summary>
        /// Right
        ///</summary>
        public OrderedTreeNode Right {
            get {
                return rbnRight;
            }
            
            set {
                rbnRight = value;
            }
        }
        public OrderedTreeNode Parent {
            get {
                return rbnParent;
            }
            
            set {
                rbnParent = value;
            }
        }

        public OrderedTreeNode() {
            Color = RED;
        }
    }
}
www.java2v.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.