Source Code Cross Referenced for TransformSegment.java in  » 6.0-JDK-Modules » j2me » com » sun » perseus » model » Java Source Code / Java DocumentationJava Source Code and Java Documentation

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » 6.0 JDK Modules » j2me » com.sun.perseus.model 
Source Cross Referenced  Class Diagram Java Document (Java Doc) 


001:        /*
002:         *  $RCSfile: TransformSegment.java,v $
003:         *
004:         * Copyright  1990-2007 Sun Microsystems, Inc. All Rights Reserved.
005:         * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER
006:         * 
007:         * This program is free software; you can redistribute it and/or
008:         * modify it under the terms of the GNU General Public License version
009:         * 2 only, as published by the Free Software Foundation.
010:         * 
011:         * This program is distributed in the hope that it will be useful, but
012:         * WITHOUT ANY WARRANTY; without even the implied warranty of
013:         * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
014:         * General Public License version 2 for more details (a copy is
015:         * included at /legal/license.txt).
016:         * 
017:         * You should have received a copy of the GNU General Public License
018:         * version 2 along with this work; if not, write to the Free Software
019:         * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
020:         * 02110-1301 USA
021:         * 
022:         * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
023:         * Clara, CA 95054 or visit www.sun.com if you need additional
024:         * information or have any questions.
025:         */
026:        package com.sun.perseus.model;
027:
028:        import com.sun.perseus.platform.MathSupport;
029:
030:        /**
031:         * Represents a segment in an animateTransform. 
032:         *
033:         *
034:         * @version $Id: TransformSegment.java,v 1.3 2006/06/29 10:47:36 ln156897 Exp $
035:         */
036:        public class TransformSegment implements  Segment {
037:            /**
038:             * Holds the minimal information for the segment's start.
039:             * The interpretation depends on the segment type.
040:             * TYPE_TRANSLATE: start[0] = tx, start[1] = ty
041:             * TYPE_SCALE: start[0] = sx, start[1] = sy
042:             * TYPE_ROTATE: start[0] = rotate, start[1] = cx, start[2] = cy;
043:             * TYPE_SKEW_X: start[0] = skewX
044:             * TYPE_SKEW_Y: start[0] = skewY
045:             */
046:            float[] start;
047:
048:            /**
049:             * Holds the minimal information for the segment's end.
050:             * @see #start
051:             */
052:            float[] end;
053:
054:            /**
055:             * The segment type.
056:             */
057:            int type;
058:
059:            /**
060:             * @return the start value.
061:             */
062:            public Object[] getStart() {
063:                float[][] v = new float[6][1];
064:                compute(0, v);
065:                return v;
066:            }
067:
068:            /**
069:             * @return set end value.
070:             */
071:            public Object[] getEnd() {
072:                float[][] v = new float[6][1];
073:                compute(1, v);
074:                return v;
075:            }
076:
077:            /**
078:             * Sets the start value to its notion of 'zero'.
079:             * For a FloatSegment, a 'zero' start means zero all all
080:             * dimensions for all components.
081:             */
082:            public void setZeroStart() {
083:                switch (type) {
084:                case AnimateTransform.TYPE_TRANSLATE:
085:                    start[0] = 0;
086:                    start[1] = 0;
087:                    break;
088:                case AnimateTransform.TYPE_SCALE:
089:                    start[0] = 1;
090:                    start[1] = 1;
091:                    break;
092:                case AnimateTransform.TYPE_ROTATE:
093:                    start[0] = 0;
094:                    break;
095:                case AnimateTransform.TYPE_SKEW_X:
096:                case AnimateTransform.TYPE_SKEW_Y:
097:                default:
098:                    start[0] = 0;
099:                    break;
100:                }
101:            }
102:
103:            /**
104:             * Sets the start value. 
105:             *
106:             * @param newStart the new segment start value.
107:             */
108:            public void setStart(Object[] newStart) {
109:                float[][] ns = (float[][]) newStart;
110:                switch (type) {
111:                case AnimateTransform.TYPE_TRANSLATE:
112:                    start[0] = ns[4][0];
113:                    start[1] = ns[5][0];
114:                    break;
115:                case AnimateTransform.TYPE_SCALE:
116:                    start[0] = ns[0][0];
117:                    start[1] = ns[3][0];
118:                    break;
119:                case AnimateTransform.TYPE_ROTATE:
120:                    // This assumes that the input matrix is a simple rotate.
121:                    // We are not trying to extract the rotation from a complex
122:                    // matrix.
123:                    start[0] = MathSupport.atan2(ns[1][0], ns[0][0]);
124:                    break;
125:                case AnimateTransform.TYPE_SKEW_X:
126:                    start[0] = MathSupport.atan(ns[2][0]);
127:                    break;
128:                case AnimateTransform.TYPE_SKEW_Y:
129:                default:
130:                    start[0] = MathSupport.atan(ns[1][0]);
131:                    break;
132:                }
133:            }
134:
135:            /**
136:             * Collapses this segment with the one passed as a parameter.
137:             * Note that if the input segment is not of the same class
138:             * as this one, an IllegalArgumentException is thrown. The 
139:             * method also throws an exception if the input segment's
140:             * end does not have the same number of components as this 
141:             * segment's end.
142:             *
143:             * After this method is called, this segment's end value
144:             * is the one of the input <code>seg</code> parameter.
145:             *
146:             * @param seg the Segment to collapse with this one.
147:             * @param anim the Animation this segment is part of.
148:             */
149:            public void collapse(final Segment seg, final Animation anim) {
150:                TransformSegment mseg = (TransformSegment) seg;
151:                if (mseg.end.length != end.length) {
152:                    throw new IllegalArgumentException();
153:                }
154:
155:                end = mseg.end;
156:            }
157:
158:            /**
159:             * Adds the input value to this Segment's end value.
160:             * 
161:             * @param by the value to add. Throws IllegalArgumentException if this
162:             * Segment type is not additive or if the input value is incompatible (e.g.,
163:             * different number of components or different number of dimensions on a
164:             * component).
165:             */
166:            public void addToEnd(Object[] by) {
167:                float[][] ns = (float[][]) by;
168:                switch (type) {
169:                case AnimateTransform.TYPE_TRANSLATE:
170:                    end[0] += ns[4][0];
171:                    end[1] += ns[5][0];
172:                    break;
173:                case AnimateTransform.TYPE_SCALE:
174:                    end[0] += ns[0][0];
175:                    end[1] += ns[3][0];
176:                    break;
177:                case AnimateTransform.TYPE_ROTATE:
178:                    // Here, we need to add a value that has the form
179:                    // [1 0 x] [cos -sin 0] [1 0 -x]   [cos -sin x-x.cos+y.sin]
180:                    // [0 1 y] [sin  cos 0] [0 1 -y] = [sin  cos y-x.sin-y.cos]
181:                    // [0 0 1] [0    0   1] [0 0  1]   [0    0   1            ]
182:                    //
183:                    // We have:
184:                    // x.(1 - cos) + y.sin = a
185:                    // y.(1 - cos) - x.sin = b
186:                    //
187:                    // So:
188:                    // I  : x.(1 - cos).sin + y.sin.sin = a.sin
189:                    // II : y.(1 - cos).(1 - cos) - x.sin.(1 - cos) = b.(1 - cos)
190:                    //
191:                    // Doing I + II yields:
192:                    //
193:                    // y.sin.sin + y.(1 - cos).(1 - cos) = a.sin + b.(1 - cos)
194:                    //
195:                    // y.(sin.sin + 1 - 2.cos + cos.cos) = a.sin + b.(1 - cos)
196:                    //
197:                    // y.2.(1 - cos) = a.sin + b.(1 - cos)
198:                    //
199:
200:                    // First, extract the rotation angle
201:                    float cos = ns[0][0];
202:                    float sin = ns[1][0];
203:
204:                    end[0] += MathSupport.atan2(ns[1][0], ns[0][0]);
205:
206:                    // Now extract the translation components.
207:                    float a = ns[4][0];
208:                    float b = ns[5][0];
209:
210:                    if (a != 0 && b != 0) {
211:                        // There is a translation component
212:                        float div = 2 * (1 - cos);
213:                        if (div != 0) {
214:                            float y = (a * sin + b * (1 - cos)) / div;
215:                            float x = (a - y * sin) / (1 - cos);
216:                            end[1] += x;
217:                            end[2] += y;
218:                        }
219:                        // else div = 0, there is no rotation, so we do not further
220:                        // process the translation component.
221:                    }
222:                    break;
223:                case AnimateTransform.TYPE_SKEW_X:
224:                    end[0] += MathSupport.atan(ns[2][0]);
225:                    break;
226:                case AnimateTransform.TYPE_SKEW_Y:
227:                default:
228:                    end[0] += MathSupport.atan(ns[1][0]);
229:                    break;
230:                }
231:            }
232:
233:            /**
234:             * @return true if this segment type supports addition. false
235:             * otherwise.
236:             */
237:            public boolean isAdditive() {
238:                return true;
239:            }
240:
241:            /**
242:             * @return the length of the segment
243:             */
244:            public float getLength() {
245:                float length = 0;
246:                switch (type) {
247:                case AnimateTransform.TYPE_TRANSLATE:
248:                    if (end[0] > start[0]) {
249:                        length += end[0] - start[0];
250:                    } else {
251:                        length += start[0] - end[0];
252:                    }
253:
254:                    if (end[1] > start[1]) {
255:                        length += end[1] - start[1];
256:                    } else {
257:                        length += start[1] - end[1];
258:                    }
259:                    return length;
260:
261:                case AnimateTransform.TYPE_SCALE:
262:                    if (end[0] > start[0]) {
263:                        length += end[0] - start[0];
264:                    } else {
265:                        length += start[0] - end[0];
266:                    }
267:
268:                    if (end[1] > start[1]) {
269:                        length += end[1] - start[1];
270:                    } else {
271:                        length += start[1] - end[1];
272:                    }
273:
274:                    return length;
275:
276:                case AnimateTransform.TYPE_ROTATE:
277:                    if (end[0] > start[0]) {
278:                        length += end[0] - start[0];
279:                    } else {
280:                        length += start[0] - end[0];
281:                    }
282:
283:                    if (end[1] > start[1]) {
284:                        length += end[1] - start[1];
285:                    } else {
286:                        length += start[1] - end[1];
287:                    }
288:
289:                    if (end[2] > start[2]) {
290:                        length += end[2] - start[2];
291:                    } else {
292:                        length += start[2] - end[2];
293:                    }
294:
295:                    return length;
296:                case AnimateTransform.TYPE_SKEW_X:
297:                    if (end[0] > start[0]) {
298:                        length += end[0] - start[0];
299:                    } else {
300:                        length += start[0] - end[0];
301:                    }
302:
303:                    return length;
304:                case AnimateTransform.TYPE_SKEW_Y:
305:                default:
306:                    if (end[0] > start[0]) {
307:                        length += end[0] - start[0];
308:                    } else {
309:                        length += start[0] - end[0];
310:                    }
311:
312:                    return length;
313:                }
314:            }
315:
316:            /**
317:             * Computes an interpolated value for the given penetration in the 
318:             * segment. Note that the start and end segment values must be set
319:             * <em>before</em> calling this method. Otherwise, a NullPointerException
320:             * is thrown.
321:             *
322:             * @param p the segment penetration. Should be in the [0, 1] range.
323:             * @param w array where the computed value should be stored.
324:             * @return the interpolated value.
325:             */
326:            public Object[] compute(final float p, final float[][] w) {
327:                switch (type) {
328:                case AnimateTransform.TYPE_TRANSLATE:
329:                    w[0][0] = 1;
330:                    w[1][0] = 0;
331:                    w[2][0] = 0;
332:                    w[3][0] = 1;
333:                    w[4][0] = (1 - p) * start[0] + p * end[0];
334:                    w[5][0] = (1 - p) * start[1] + p * end[1];
335:                    break;
336:
337:                case AnimateTransform.TYPE_SCALE:
338:                    w[0][0] = (1 - p) * start[0] + p * end[0];
339:                    w[1][0] = 0;
340:                    w[2][0] = 0;
341:                    w[3][0] = (1 - p) * start[1] + p * end[1];
342:                    w[4][0] = 0;
343:                    w[5][0] = 0;
344:                    break;
345:
346:                case AnimateTransform.TYPE_ROTATE: {
347:                    float x = (1 - p) * start[1] + p * end[1];
348:                    float y = (1 - p) * start[2] + p * end[2];
349:                    float theta = (1 - p) * start[0] + p * end[0];
350:                    float sin = MathSupport.sin(theta);
351:                    float cos = MathSupport.cos(theta);
352:
353:                    w[0][0] = cos;
354:                    w[1][0] = sin;
355:                    w[2][0] = -sin;
356:                    w[3][0] = cos;
357:                    w[4][0] = (x - x * cos + y * sin);
358:                    w[5][0] = (y - x * sin - y * cos);
359:                }
360:                    break;
361:                case AnimateTransform.TYPE_SKEW_X: {
362:                    float theta = (1 - p) * start[0] + p * end[0];
363:                    w[0][0] = 1;
364:                    w[1][0] = 0;
365:                    w[2][0] = MathSupport.tan(theta);
366:                    w[3][0] = 1;
367:                    w[4][0] = 0;
368:                    w[5][0] = 0;
369:                }
370:                    break;
371:
372:                case AnimateTransform.TYPE_SKEW_Y:
373:                default: {
374:                    float theta = (1 - p) * start[0] + p * end[0];
375:                    w[0][0] = 1;
376:                    w[1][0] = MathSupport.tan(theta);
377:                    w[2][0] = 0;
378:                    w[3][0] = 1;
379:                    w[4][0] = 0;
380:                    w[5][0] = 0;
381:                }
382:                    break;
383:                }
384:
385:                return w;
386:            }
387:
388:            /**
389:             * Should be called after the segment's configuration is complete
390:             * to give the segment's implementation a chance to initialize 
391:             * internal data and cache values.
392:             */
393:            public void initialize() {
394:            }
395:
396:        }
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.