Source Code Cross Referenced for GeocentricTransformTest.java in  » GIS » GeoTools-2.4.1 » org » geotools » referencing » operation » transform » Java Source Code / Java DocumentationJava Source Code and Java Documentation

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » GIS » GeoTools 2.4.1 » org.geotools.referencing.operation.transform 
Source Cross Referenced  Class Diagram Java Document (Java Doc) 


001:        /*
002:         *    GeoTools - OpenSource mapping toolkit
003:         *    http://geotools.org
004:         *    (C) 2003-2006, Geotools Project Managment Committee (PMC)
005:         *    (C) 2002, Institut de Recherche pour le Développement
006:         *    
007:         *    This library is free software; you can redistribute it and/or
008:         *    modify it under the terms of the GNU Lesser General Public
009:         *    License as published by the Free Software Foundation; either
010:         *    version 2.1 of the License, or (at your option) any later version.
011:         *
012:         *    This library is distributed in the hope that it will be useful,
013:         *    but WITHOUT ANY WARRANTY; without even the implied warranty of
014:         *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
015:         *    Lesser General Public License for more details.
016:         */
017:        package org.geotools.referencing.operation.transform;
018:
019:        // J2SE dependencies and extensions
020:        import javax.vecmath.Point3d;
021:
022:        // JUnit dependencies
023:        import junit.framework.Test;
024:        import junit.framework.TestSuite;
025:
026:        // OpenGIS dependencies
027:        import org.opengis.referencing.FactoryException;
028:        import org.opengis.referencing.crs.CoordinateReferenceSystem;
029:        import org.opengis.referencing.operation.CoordinateOperation;
030:        import org.opengis.referencing.operation.MathTransform;
031:        import org.opengis.referencing.operation.TransformException;
032:
033:        // Geotools dependencies
034:        import org.geotools.referencing.crs.DefaultGeocentricCRS;
035:        import org.geotools.referencing.crs.DefaultGeographicCRS;
036:        import org.geotools.referencing.datum.DefaultEllipsoid;
037:        import org.geotools.referencing.operation.TestTransform;
038:        import org.geotools.resources.XMath;
039:
040:        /**
041:         * Test the following transformation classes with the geocentric transform:
042:         *
043:         * <ul>
044:         *   <li>{@link CoordinateOperation}</li>
045:         *   <li>{@link GeocentricTransform}</li>
046:         *   <li>{@link DefaultEllipsoid}</li>
047:         * </ul>
048:         *
049:         * @source $URL: http://svn.geotools.org/geotools/tags/2.4.1/modules/library/referencing/src/test/java/org/geotools/referencing/operation/transform/GeocentricTransformTest.java $
050:         * @version $Id: GeocentricTransformTest.java 25262 2007-04-23 21:11:16Z desruisseaux $
051:         * @author Martin Desruisseaux
052:         */
053:        public final class GeocentricTransformTest extends TestTransform {
054:            /**
055:             * Runs the tests with the textual test runner.
056:             */
057:            public static void main(String args[]) {
058:                junit.textui.TestRunner.run(suite());
059:            }
060:
061:            /**
062:             * Returns the test suite.
063:             */
064:            public static Test suite() {
065:                return new TestSuite(GeocentricTransformTest.class);
066:            }
067:
068:            /**
069:             * Constructs a test case with the given name.
070:             */
071:            public GeocentricTransformTest(final String name) {
072:                super (name);
073:            }
074:
075:            /**
076:             * Tests the orthodromic distance computed by {@link DefaultEllipsoid}. There is actually two
077:             * algorithms used: one for the ellipsoidal model, and a simpler one for spherical model.
078:             * We test the ellipsoidal model using know values of nautical mile at different latitude.
079:             * Then, we test the spherical model with random values. If JDK 1.4 assertion is enabled,
080:             * the spherical model will compare its result with the ellipsoidal one.
081:             *
082:             * Note about nautical mile:
083:             *
084:             *    "Le mille marin était, en principe, la longueur de la minute sexagésimale du méridien
085:             *     à la latitude de 45°. Cette longueur dépendait donc des valeurs adoptées pour le rayon
086:             *     équatorial de la terre et son aplatissement. En France, le décret du 3 mai 1961 sur les
087:             *     unités de mesure, fixe à 1852 mètres la longueur du mille marin qui est également la
088:             *     valeur adoptée pour le mille marin international."
089:             *
090:             *                                   Source: Office de la langue française, 1996
091:             *                                           http://www.granddictionnaire.com
092:             */
093:            public void testEllipsoid() throws FactoryException {
094:                final DefaultEllipsoid e = DefaultEllipsoid.WGS84;
095:                final double hm = 0.5 / 60; // Half of a minute of angle, in degrees.
096:                /*
097:                 * Test the ellipsoidal model.
098:                 */
099:                assertEquals("Nautical mile at equator", 1842.78, e
100:                        .orthodromicDistance(0, 00 - hm, 0, 00 + hm), 0.2);
101:                assertEquals("Nautical mile at North pole", 1861.67, e
102:                        .orthodromicDistance(0, 90 - 2 * hm, 0, 90), 0.2);
103:                assertEquals("Nautical mile at South pole", 1861.67, e
104:                        .orthodromicDistance(0, 2 * hm - 90, 0, -90), 0.2);
105:                assertEquals("International nautical mile", 1852.00, e
106:                        .orthodromicDistance(0, 45 - hm, 0, 45 + hm), 0.2);
107:                for (double i = 0.01; i < 180; i += 1) {
108:                    final double base = 180 * random.nextDouble() - 90;
109:                    assertEquals(i + "° rotation", e.getSemiMajorAxis()
110:                            * Math.toRadians(i), e.orthodromicDistance(base, 0,
111:                            base + i, 0), 0.2);
112:                }
113:                /*
114:                 * Test the spherical model. The factory method should create
115:                 * a specialized class, which is not the usual Ellipsoid class.
116:                 */
117:                final double radius = e.getSemiMajorAxis();
118:                final double circumference = (radius * 1.00000001)
119:                        * (2 * Math.PI);
120:                final DefaultEllipsoid s = DefaultEllipsoid.createEllipsoid(
121:                        "Sphere", radius, radius, e.getAxisUnit());
122:                assertTrue("Spheroid class", !DefaultEllipsoid.class.equals(s
123:                        .getClass()));
124:                for (double i = 0; i <= 180; i += 1) {
125:                    final double base = 360 * random.nextDouble() - 180;
126:                    assertEquals(i + "° rotation", s.getSemiMajorAxis()
127:                            * Math.toRadians(i), s.orthodromicDistance(base, 0,
128:                            base + i, 0), 0.001);
129:                }
130:                for (double i = -90; i <= +90; i += 1) {
131:                    final double meridian = 360 * random.nextDouble() - 180;
132:                    assertEquals(i + "° rotation", s.getSemiMajorAxis()
133:                            * Math.toRadians(Math.abs(i)), s
134:                            .orthodromicDistance(meridian, 0, meridian, i),
135:                            0.001);
136:                }
137:                for (int i = 0; i < 100; i++) {
138:                    final double y1 = -90 + 180 * random.nextDouble();
139:                    final double y2 = -90 + 180 * random.nextDouble();
140:                    final double x1 = -180 + 360 * random.nextDouble();
141:                    final double x2 = -180 + 360 * random.nextDouble();
142:                    final double distance = s.orthodromicDistance(x1, y1, x2,
143:                            y2);
144:                    assertTrue("Range of legal values", distance >= 0
145:                            && distance <= circumference);
146:                }
147:            }
148:
149:            /**
150:             * Tests the {@link GeocentricTransform} class.
151:             */
152:            public void testGeocentricTransform() throws FactoryException,
153:                    TransformException {
154:                /*
155:                 * Gets the math transform from WGS84 to a geocentric transform.
156:                 */
157:                final DefaultEllipsoid ellipsoid = DefaultEllipsoid.WGS84;
158:                final CoordinateReferenceSystem sourceCRS = DefaultGeographicCRS.WGS84_3D;
159:                final CoordinateReferenceSystem targetCRS = DefaultGeocentricCRS.CARTESIAN;
160:                final CoordinateOperation operation = opFactory
161:                        .createOperation(sourceCRS, targetCRS);
162:                final MathTransform transform = operation.getMathTransform();
163:                final int dimension = transform.getSourceDimensions();
164:                assertEquals("Source dimension", 3, dimension);
165:                assertEquals("Target dimension", 3, transform
166:                        .getTargetDimensions());
167:                assertSame("Inverse transform", transform, transform.inverse()
168:                        .inverse());
169:                assertInterfaced(transform);
170:                /*
171:                 * Construct an array of 850 random points. The first 8 points
172:                 * are initialized to know values. Other points are left random.
173:                 */
174:                final double cartesianDistance[] = new double[4];
175:                final double orthodromicDistance[] = new double[4];
176:                final double[] array0 = new double[900]; // Must be divisible by 3.
177:                for (int i = 0; i < array0.length; i++) {
178:                    final int range;
179:                    switch (i % 3) {
180:                    case 0:
181:                        range = 360;
182:                        break; // Longitude
183:                    case 1:
184:                        range = 180;
185:                        break; // Latitidue
186:                    case 2:
187:                        range = 10000;
188:                        break; // Altitude
189:                    default:
190:                        range = 0;
191:                        break; // Should not happen
192:                    }
193:                    array0[i] = range * random.nextDouble() - (range / 2);
194:                }
195:                array0[0] = 35.0;
196:                array0[1] = 24.0;
197:                array0[2] = 8000; // 24°N 35°E 8km
198:                array0[3] = 34.8;
199:                array0[4] = 24.7;
200:                array0[5] = 5000; // ... about 80 km away
201:                cartesianDistance[0] = 80284.00;
202:                orthodromicDistance[0] = 80302.99; // Not really exact.
203:
204:                array0[6] = 0;
205:                array0[7] = 0.0;
206:                array0[8] = 0;
207:                array0[9] = 180;
208:                array0[10] = 0.0;
209:                array0[11] = 0; // Antipodes; distance should be 2*6378.137 km
210:                cartesianDistance[1] = ellipsoid.getSemiMajorAxis() * 2;
211:                orthodromicDistance[1] = ellipsoid.getSemiMajorAxis() * Math.PI;
212:
213:                array0[12] = 0;
214:                array0[13] = -90;
215:                array0[14] = 0;
216:                array0[15] = 180;
217:                array0[16] = +90;
218:                array0[17] = 0; // Antipodes; distance should be 2*6356.752 km
219:                cartesianDistance[2] = ellipsoid.getSemiMinorAxis() * 2;
220:                orthodromicDistance[2] = 20003931.46;
221:
222:                array0[18] = 95;
223:                array0[19] = -38;
224:                array0[20] = 0;
225:                array0[21] = -85;
226:                array0[22] = +38;
227:                array0[23] = 0; // Antipodes
228:                cartesianDistance[3] = 12740147.19;
229:                orthodromicDistance[3] = 20003867.86;
230:                /*
231:                 * Transform all points, and then inverse transform then. The resulting
232:                 * <code>array2</code> array should be equals to <code>array0</code>
233:                 * except for rounding errors. We tolerate maximal error of 0.1 second
234:                 * in longitude or latitude and 1 cm in height.
235:                 */
236:                final double[] array1 = new double[array0.length];
237:                final double[] array2 = new double[array0.length];
238:                transform.transform(array0, 0, array1, 0, array0.length
239:                        / dimension);
240:                transform.inverse().transform(array1, 0, array2, 0,
241:                        array1.length / dimension);
242:                assertPointsEqual(
243:                        "transform(Geographic --> Geocentric --> Geographic)",
244:                        array0, array2, new double[] { 0.1 / 3600, 0.1 / 3600,
245:                                0.01 });
246:                /*
247:                 * Compare the distances between "special" points with expected distances.
248:                 * This test the ellipsoid orthodromic distance computation as well.
249:                 * We require a precision of 10 centimeters.
250:                 */
251:                for (int i = 0; i < array0.length / 6; i++) {
252:                    final int base = i * 6;
253:                    final Point3d pt1 = new Point3d(array1[base + 0],
254:                            array1[base + 1], array1[base + 2]);
255:                    final Point3d pt2 = new Point3d(array1[base + 3],
256:                            array1[base + 4], array1[base + 5]);
257:                    final double cartesian = pt1.distance(pt2);
258:                    if (i < cartesianDistance.length) {
259:                        assertEquals("Cartesian distance[" + i + ']',
260:                                cartesianDistance[i], cartesian, 0.1);
261:                    }
262:                    /*
263:                     * Compare with orthodromic distance.  Distance is computed using an ellipsoid
264:                     * at the maximal altitude (i.e. the length of semi-major axis is increased to
265:                     * fit the maximal altitude).
266:                     */
267:                    try {
268:                        final double altitude = Math.max(array0[base + 2],
269:                                array0[base + 5]);
270:                        final DefaultEllipsoid ellip = DefaultEllipsoid
271:                                .createFlattenedSphere("Temporary", ellipsoid
272:                                        .getSemiMajorAxis()
273:                                        + altitude, ellipsoid
274:                                        .getInverseFlattening(), ellipsoid
275:                                        .getAxisUnit());
276:                        double orthodromic = ellip.orthodromicDistance(
277:                                array0[base + 0], array0[base + 1],
278:                                array0[base + 3], array0[base + 4]);
279:                        orthodromic = XMath.hypot(orthodromic, array0[base + 2]
280:                                - array0[base + 5]);
281:                        if (i < orthodromicDistance.length) {
282:                            assertEquals("Orthodromic distance[" + i + ']',
283:                                    orthodromicDistance[i], orthodromic, 0.1);
284:                        }
285:                        assertTrue("Distance consistency[" + i + ']',
286:                                cartesian <= orthodromic);
287:                    } catch (ArithmeticException exception) {
288:                        // Orthodromic distance computation didn't converge. Ignore...
289:                    }
290:                }
291:            }
292:        }
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.