Source Code Cross Referenced for AESLightEngine.java in  » Security » Bouncy-Castle » org » bouncycastle » crypto » engines » Java Source Code / Java DocumentationJava Source Code and Java Documentation

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » Security » Bouncy Castle » org.bouncycastle.crypto.engines 
Source Cross Referenced  Class Diagram Java Document (Java Doc) 


001:        package org.bouncycastle.crypto.engines;
002:
003:        import org.bouncycastle.crypto.BlockCipher;
004:        import org.bouncycastle.crypto.CipherParameters;
005:        import org.bouncycastle.crypto.DataLengthException;
006:        import org.bouncycastle.crypto.params.KeyParameter;
007:
008:        /**
009:         * an implementation of the AES (Rijndael), from FIPS-197.
010:         * <p>
011:         * For further details see: <a href="http://csrc.nist.gov/encryption/aes/">http://csrc.nist.gov/encryption/aes/</a>.
012:         *
013:         * This implementation is based on optimizations from Dr. Brian Gladman's paper and C code at
014:         * <a href="http://fp.gladman.plus.com/cryptography_technology/rijndael/">http://fp.gladman.plus.com/cryptography_technology/rijndael/</a>
015:         *
016:         * There are three levels of tradeoff of speed vs memory
017:         * Because java has no preprocessor, they are written as three separate classes from which to choose
018:         *
019:         * The fastest uses 8Kbytes of static tables to precompute round calculations, 4 256 word tables for encryption
020:         * and 4 for decryption.
021:         *
022:         * The middle performance version uses only one 256 word table for each, for a total of 2Kbytes,
023:         * adding 12 rotate operations per round to compute the values contained in the other tables from
024:         * the contents of the first
025:         *
026:         * The slowest version uses no static tables at all and computes the values
027:         * in each round.
028:         * <p>
029:         * This file contains the slowest performance version with no static tables
030:         * for round precomputation, but it has the smallest foot print.
031:         *
032:         */
033:        public class AESLightEngine implements  BlockCipher {
034:            // The S box
035:            private static final byte[] S = { (byte) 99, (byte) 124,
036:                    (byte) 119, (byte) 123, (byte) 242, (byte) 107, (byte) 111,
037:                    (byte) 197, (byte) 48, (byte) 1, (byte) 103, (byte) 43,
038:                    (byte) 254, (byte) 215, (byte) 171, (byte) 118, (byte) 202,
039:                    (byte) 130, (byte) 201, (byte) 125, (byte) 250, (byte) 89,
040:                    (byte) 71, (byte) 240, (byte) 173, (byte) 212, (byte) 162,
041:                    (byte) 175, (byte) 156, (byte) 164, (byte) 114, (byte) 192,
042:                    (byte) 183, (byte) 253, (byte) 147, (byte) 38, (byte) 54,
043:                    (byte) 63, (byte) 247, (byte) 204, (byte) 52, (byte) 165,
044:                    (byte) 229, (byte) 241, (byte) 113, (byte) 216, (byte) 49,
045:                    (byte) 21, (byte) 4, (byte) 199, (byte) 35, (byte) 195,
046:                    (byte) 24, (byte) 150, (byte) 5, (byte) 154, (byte) 7,
047:                    (byte) 18, (byte) 128, (byte) 226, (byte) 235, (byte) 39,
048:                    (byte) 178, (byte) 117, (byte) 9, (byte) 131, (byte) 44,
049:                    (byte) 26, (byte) 27, (byte) 110, (byte) 90, (byte) 160,
050:                    (byte) 82, (byte) 59, (byte) 214, (byte) 179, (byte) 41,
051:                    (byte) 227, (byte) 47, (byte) 132, (byte) 83, (byte) 209,
052:                    (byte) 0, (byte) 237, (byte) 32, (byte) 252, (byte) 177,
053:                    (byte) 91, (byte) 106, (byte) 203, (byte) 190, (byte) 57,
054:                    (byte) 74, (byte) 76, (byte) 88, (byte) 207, (byte) 208,
055:                    (byte) 239, (byte) 170, (byte) 251, (byte) 67, (byte) 77,
056:                    (byte) 51, (byte) 133, (byte) 69, (byte) 249, (byte) 2,
057:                    (byte) 127, (byte) 80, (byte) 60, (byte) 159, (byte) 168,
058:                    (byte) 81, (byte) 163, (byte) 64, (byte) 143, (byte) 146,
059:                    (byte) 157, (byte) 56, (byte) 245, (byte) 188, (byte) 182,
060:                    (byte) 218, (byte) 33, (byte) 16, (byte) 255, (byte) 243,
061:                    (byte) 210, (byte) 205, (byte) 12, (byte) 19, (byte) 236,
062:                    (byte) 95, (byte) 151, (byte) 68, (byte) 23, (byte) 196,
063:                    (byte) 167, (byte) 126, (byte) 61, (byte) 100, (byte) 93,
064:                    (byte) 25, (byte) 115, (byte) 96, (byte) 129, (byte) 79,
065:                    (byte) 220, (byte) 34, (byte) 42, (byte) 144, (byte) 136,
066:                    (byte) 70, (byte) 238, (byte) 184, (byte) 20, (byte) 222,
067:                    (byte) 94, (byte) 11, (byte) 219, (byte) 224, (byte) 50,
068:                    (byte) 58, (byte) 10, (byte) 73, (byte) 6, (byte) 36,
069:                    (byte) 92, (byte) 194, (byte) 211, (byte) 172, (byte) 98,
070:                    (byte) 145, (byte) 149, (byte) 228, (byte) 121, (byte) 231,
071:                    (byte) 200, (byte) 55, (byte) 109, (byte) 141, (byte) 213,
072:                    (byte) 78, (byte) 169, (byte) 108, (byte) 86, (byte) 244,
073:                    (byte) 234, (byte) 101, (byte) 122, (byte) 174, (byte) 8,
074:                    (byte) 186, (byte) 120, (byte) 37, (byte) 46, (byte) 28,
075:                    (byte) 166, (byte) 180, (byte) 198, (byte) 232, (byte) 221,
076:                    (byte) 116, (byte) 31, (byte) 75, (byte) 189, (byte) 139,
077:                    (byte) 138, (byte) 112, (byte) 62, (byte) 181, (byte) 102,
078:                    (byte) 72, (byte) 3, (byte) 246, (byte) 14, (byte) 97,
079:                    (byte) 53, (byte) 87, (byte) 185, (byte) 134, (byte) 193,
080:                    (byte) 29, (byte) 158, (byte) 225, (byte) 248, (byte) 152,
081:                    (byte) 17, (byte) 105, (byte) 217, (byte) 142, (byte) 148,
082:                    (byte) 155, (byte) 30, (byte) 135, (byte) 233, (byte) 206,
083:                    (byte) 85, (byte) 40, (byte) 223, (byte) 140, (byte) 161,
084:                    (byte) 137, (byte) 13, (byte) 191, (byte) 230, (byte) 66,
085:                    (byte) 104, (byte) 65, (byte) 153, (byte) 45, (byte) 15,
086:                    (byte) 176, (byte) 84, (byte) 187, (byte) 22, };
087:
088:            // The inverse S-box
089:            private static final byte[] Si = { (byte) 82, (byte) 9, (byte) 106,
090:                    (byte) 213, (byte) 48, (byte) 54, (byte) 165, (byte) 56,
091:                    (byte) 191, (byte) 64, (byte) 163, (byte) 158, (byte) 129,
092:                    (byte) 243, (byte) 215, (byte) 251, (byte) 124, (byte) 227,
093:                    (byte) 57, (byte) 130, (byte) 155, (byte) 47, (byte) 255,
094:                    (byte) 135, (byte) 52, (byte) 142, (byte) 67, (byte) 68,
095:                    (byte) 196, (byte) 222, (byte) 233, (byte) 203, (byte) 84,
096:                    (byte) 123, (byte) 148, (byte) 50, (byte) 166, (byte) 194,
097:                    (byte) 35, (byte) 61, (byte) 238, (byte) 76, (byte) 149,
098:                    (byte) 11, (byte) 66, (byte) 250, (byte) 195, (byte) 78,
099:                    (byte) 8, (byte) 46, (byte) 161, (byte) 102, (byte) 40,
100:                    (byte) 217, (byte) 36, (byte) 178, (byte) 118, (byte) 91,
101:                    (byte) 162, (byte) 73, (byte) 109, (byte) 139, (byte) 209,
102:                    (byte) 37, (byte) 114, (byte) 248, (byte) 246, (byte) 100,
103:                    (byte) 134, (byte) 104, (byte) 152, (byte) 22, (byte) 212,
104:                    (byte) 164, (byte) 92, (byte) 204, (byte) 93, (byte) 101,
105:                    (byte) 182, (byte) 146, (byte) 108, (byte) 112, (byte) 72,
106:                    (byte) 80, (byte) 253, (byte) 237, (byte) 185, (byte) 218,
107:                    (byte) 94, (byte) 21, (byte) 70, (byte) 87, (byte) 167,
108:                    (byte) 141, (byte) 157, (byte) 132, (byte) 144, (byte) 216,
109:                    (byte) 171, (byte) 0, (byte) 140, (byte) 188, (byte) 211,
110:                    (byte) 10, (byte) 247, (byte) 228, (byte) 88, (byte) 5,
111:                    (byte) 184, (byte) 179, (byte) 69, (byte) 6, (byte) 208,
112:                    (byte) 44, (byte) 30, (byte) 143, (byte) 202, (byte) 63,
113:                    (byte) 15, (byte) 2, (byte) 193, (byte) 175, (byte) 189,
114:                    (byte) 3, (byte) 1, (byte) 19, (byte) 138, (byte) 107,
115:                    (byte) 58, (byte) 145, (byte) 17, (byte) 65, (byte) 79,
116:                    (byte) 103, (byte) 220, (byte) 234, (byte) 151, (byte) 242,
117:                    (byte) 207, (byte) 206, (byte) 240, (byte) 180, (byte) 230,
118:                    (byte) 115, (byte) 150, (byte) 172, (byte) 116, (byte) 34,
119:                    (byte) 231, (byte) 173, (byte) 53, (byte) 133, (byte) 226,
120:                    (byte) 249, (byte) 55, (byte) 232, (byte) 28, (byte) 117,
121:                    (byte) 223, (byte) 110, (byte) 71, (byte) 241, (byte) 26,
122:                    (byte) 113, (byte) 29, (byte) 41, (byte) 197, (byte) 137,
123:                    (byte) 111, (byte) 183, (byte) 98, (byte) 14, (byte) 170,
124:                    (byte) 24, (byte) 190, (byte) 27, (byte) 252, (byte) 86,
125:                    (byte) 62, (byte) 75, (byte) 198, (byte) 210, (byte) 121,
126:                    (byte) 32, (byte) 154, (byte) 219, (byte) 192, (byte) 254,
127:                    (byte) 120, (byte) 205, (byte) 90, (byte) 244, (byte) 31,
128:                    (byte) 221, (byte) 168, (byte) 51, (byte) 136, (byte) 7,
129:                    (byte) 199, (byte) 49, (byte) 177, (byte) 18, (byte) 16,
130:                    (byte) 89, (byte) 39, (byte) 128, (byte) 236, (byte) 95,
131:                    (byte) 96, (byte) 81, (byte) 127, (byte) 169, (byte) 25,
132:                    (byte) 181, (byte) 74, (byte) 13, (byte) 45, (byte) 229,
133:                    (byte) 122, (byte) 159, (byte) 147, (byte) 201, (byte) 156,
134:                    (byte) 239, (byte) 160, (byte) 224, (byte) 59, (byte) 77,
135:                    (byte) 174, (byte) 42, (byte) 245, (byte) 176, (byte) 200,
136:                    (byte) 235, (byte) 187, (byte) 60, (byte) 131, (byte) 83,
137:                    (byte) 153, (byte) 97, (byte) 23, (byte) 43, (byte) 4,
138:                    (byte) 126, (byte) 186, (byte) 119, (byte) 214, (byte) 38,
139:                    (byte) 225, (byte) 105, (byte) 20, (byte) 99, (byte) 85,
140:                    (byte) 33, (byte) 12, (byte) 125, };
141:
142:            // vector used in calculating key schedule (powers of x in GF(256))
143:            private static final int[] rcon = { 0x01, 0x02, 0x04, 0x08, 0x10,
144:                    0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a,
145:                    0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3,
146:                    0x7d, 0xfa, 0xef, 0xc5, 0x91 };
147:
148:            private int shift(int r, int shift) {
149:                return (r >>> shift) | (r << -shift);
150:            }
151:
152:            /* multiply four bytes in GF(2^8) by 'x' {02} in parallel */
153:
154:            private static final int m1 = 0x80808080;
155:            private static final int m2 = 0x7f7f7f7f;
156:            private static final int m3 = 0x0000001b;
157:
158:            private int FFmulX(int x) {
159:                return (((x & m2) << 1) ^ (((x & m1) >>> 7) * m3));
160:            }
161:
162:            /* 
163:               The following defines provide alternative definitions of FFmulX that might
164:               give improved performance if a fast 32-bit multiply is not available.
165:               
166:               private int FFmulX(int x) { int u = x & m1; u |= (u >> 1); return ((x & m2) << 1) ^ ((u >>> 3) | (u >>> 6)); } 
167:               private static final int  m4 = 0x1b1b1b1b;
168:               private int FFmulX(int x) { int u = x & m1; return ((x & m2) << 1) ^ ((u - (u >>> 7)) & m4); } 
169:
170:             */
171:
172:            private int mcol(int x) {
173:                int f2 = FFmulX(x);
174:                return f2 ^ shift(x ^ f2, 8) ^ shift(x, 16) ^ shift(x, 24);
175:            }
176:
177:            private int inv_mcol(int x) {
178:                int f2 = FFmulX(x);
179:                int f4 = FFmulX(f2);
180:                int f8 = FFmulX(f4);
181:                int f9 = x ^ f8;
182:
183:                return f2 ^ f4 ^ f8 ^ shift(f2 ^ f9, 8) ^ shift(f4 ^ f9, 16)
184:                        ^ shift(f9, 24);
185:            }
186:
187:            private int subWord(int x) {
188:                return (S[x & 255] & 255 | ((S[(x >> 8) & 255] & 255) << 8)
189:                        | ((S[(x >> 16) & 255] & 255) << 16) | S[(x >> 24) & 255] << 24);
190:            }
191:
192:            /**
193:             * Calculate the necessary round keys
194:             * The number of calculations depends on key size and block size
195:             * AES specified a fixed block size of 128 bits and key sizes 128/192/256 bits
196:             * This code is written assuming those are the only possible values
197:             */
198:            private int[][] generateWorkingKey(byte[] key, boolean forEncryption) {
199:                int KC = key.length / 4; // key length in words
200:                int t;
201:
202:                if (((KC != 4) && (KC != 6) && (KC != 8))
203:                        || ((KC * 4) != key.length)) {
204:                    throw new IllegalArgumentException(
205:                            "Key length not 128/192/256 bits.");
206:                }
207:
208:                ROUNDS = KC + 6; // This is not always true for the generalized Rijndael that allows larger block sizes
209:                int[][] W = new int[ROUNDS + 1][4]; // 4 words in a block
210:
211:                //
212:                // copy the key into the round key array
213:                //
214:
215:                t = 0;
216:                int i = 0;
217:                while (i < key.length) {
218:                    W[t >> 2][t & 3] = (key[i] & 0xff)
219:                            | ((key[i + 1] & 0xff) << 8)
220:                            | ((key[i + 2] & 0xff) << 16) | (key[i + 3] << 24);
221:                    i += 4;
222:                    t++;
223:                }
224:
225:                //
226:                // while not enough round key material calculated
227:                // calculate new values
228:                //
229:                int k = (ROUNDS + 1) << 2;
230:                for (i = KC; (i < k); i++) {
231:                    int temp = W[(i - 1) >> 2][(i - 1) & 3];
232:                    if ((i % KC) == 0) {
233:                        temp = subWord(shift(temp, 8)) ^ rcon[(i / KC) - 1];
234:                    } else if ((KC > 6) && ((i % KC) == 4)) {
235:                        temp = subWord(temp);
236:                    }
237:
238:                    W[i >> 2][i & 3] = W[(i - KC) >> 2][(i - KC) & 3] ^ temp;
239:                }
240:
241:                if (!forEncryption) {
242:                    for (int j = 1; j < ROUNDS; j++) {
243:                        for (i = 0; i < 4; i++) {
244:                            W[j][i] = inv_mcol(W[j][i]);
245:                        }
246:                    }
247:                }
248:
249:                return W;
250:            }
251:
252:            private int ROUNDS;
253:            private int[][] WorkingKey = null;
254:            private int C0, C1, C2, C3;
255:            private boolean forEncryption;
256:
257:            private static final int BLOCK_SIZE = 16;
258:
259:            /**
260:             * default constructor - 128 bit block size.
261:             */
262:            public AESLightEngine() {
263:            }
264:
265:            /**
266:             * initialise an AES cipher.
267:             *
268:             * @param forEncryption whether or not we are for encryption.
269:             * @param params the parameters required to set up the cipher.
270:             * @exception IllegalArgumentException if the params argument is
271:             * inappropriate.
272:             */
273:            public void init(boolean forEncryption, CipherParameters params) {
274:                if (params instanceof  KeyParameter) {
275:                    WorkingKey = generateWorkingKey(((KeyParameter) params)
276:                            .getKey(), forEncryption);
277:                    this .forEncryption = forEncryption;
278:                    return;
279:                }
280:
281:                throw new IllegalArgumentException(
282:                        "invalid parameter passed to AES init - "
283:                                + params.getClass().getName());
284:            }
285:
286:            public String getAlgorithmName() {
287:                return "AES";
288:            }
289:
290:            public int getBlockSize() {
291:                return BLOCK_SIZE;
292:            }
293:
294:            public int processBlock(byte[] in, int inOff, byte[] out, int outOff) {
295:                if (WorkingKey == null) {
296:                    throw new IllegalStateException(
297:                            "AES engine not initialised");
298:                }
299:
300:                if ((inOff + (32 / 2)) > in.length) {
301:                    throw new DataLengthException("input buffer too short");
302:                }
303:
304:                if ((outOff + (32 / 2)) > out.length) {
305:                    throw new DataLengthException("output buffer too short");
306:                }
307:
308:                if (forEncryption) {
309:                    unpackBlock(in, inOff);
310:                    encryptBlock(WorkingKey);
311:                    packBlock(out, outOff);
312:                } else {
313:                    unpackBlock(in, inOff);
314:                    decryptBlock(WorkingKey);
315:                    packBlock(out, outOff);
316:                }
317:
318:                return BLOCK_SIZE;
319:            }
320:
321:            public void reset() {
322:            }
323:
324:            private final void unpackBlock(byte[] bytes, int off) {
325:                int index = off;
326:
327:                C0 = (bytes[index++] & 0xff);
328:                C0 |= (bytes[index++] & 0xff) << 8;
329:                C0 |= (bytes[index++] & 0xff) << 16;
330:                C0 |= bytes[index++] << 24;
331:
332:                C1 = (bytes[index++] & 0xff);
333:                C1 |= (bytes[index++] & 0xff) << 8;
334:                C1 |= (bytes[index++] & 0xff) << 16;
335:                C1 |= bytes[index++] << 24;
336:
337:                C2 = (bytes[index++] & 0xff);
338:                C2 |= (bytes[index++] & 0xff) << 8;
339:                C2 |= (bytes[index++] & 0xff) << 16;
340:                C2 |= bytes[index++] << 24;
341:
342:                C3 = (bytes[index++] & 0xff);
343:                C3 |= (bytes[index++] & 0xff) << 8;
344:                C3 |= (bytes[index++] & 0xff) << 16;
345:                C3 |= bytes[index++] << 24;
346:            }
347:
348:            private final void packBlock(byte[] bytes, int off) {
349:                int index = off;
350:
351:                bytes[index++] = (byte) C0;
352:                bytes[index++] = (byte) (C0 >> 8);
353:                bytes[index++] = (byte) (C0 >> 16);
354:                bytes[index++] = (byte) (C0 >> 24);
355:
356:                bytes[index++] = (byte) C1;
357:                bytes[index++] = (byte) (C1 >> 8);
358:                bytes[index++] = (byte) (C1 >> 16);
359:                bytes[index++] = (byte) (C1 >> 24);
360:
361:                bytes[index++] = (byte) C2;
362:                bytes[index++] = (byte) (C2 >> 8);
363:                bytes[index++] = (byte) (C2 >> 16);
364:                bytes[index++] = (byte) (C2 >> 24);
365:
366:                bytes[index++] = (byte) C3;
367:                bytes[index++] = (byte) (C3 >> 8);
368:                bytes[index++] = (byte) (C3 >> 16);
369:                bytes[index++] = (byte) (C3 >> 24);
370:            }
371:
372:            private void encryptBlock(int[][] KW) {
373:                int r, r0, r1, r2, r3;
374:
375:                C0 ^= KW[0][0];
376:                C1 ^= KW[0][1];
377:                C2 ^= KW[0][2];
378:                C3 ^= KW[0][3];
379:
380:                for (r = 1; r < ROUNDS - 1;) {
381:                    r0 = mcol((S[C0 & 255] & 255)
382:                            ^ ((S[(C1 >> 8) & 255] & 255) << 8)
383:                            ^ ((S[(C2 >> 16) & 255] & 255) << 16)
384:                            ^ (S[(C3 >> 24) & 255] << 24))
385:                            ^ KW[r][0];
386:                    r1 = mcol((S[C1 & 255] & 255)
387:                            ^ ((S[(C2 >> 8) & 255] & 255) << 8)
388:                            ^ ((S[(C3 >> 16) & 255] & 255) << 16)
389:                            ^ (S[(C0 >> 24) & 255] << 24))
390:                            ^ KW[r][1];
391:                    r2 = mcol((S[C2 & 255] & 255)
392:                            ^ ((S[(C3 >> 8) & 255] & 255) << 8)
393:                            ^ ((S[(C0 >> 16) & 255] & 255) << 16)
394:                            ^ (S[(C1 >> 24) & 255] << 24))
395:                            ^ KW[r][2];
396:                    r3 = mcol((S[C3 & 255] & 255)
397:                            ^ ((S[(C0 >> 8) & 255] & 255) << 8)
398:                            ^ ((S[(C1 >> 16) & 255] & 255) << 16)
399:                            ^ (S[(C2 >> 24) & 255] << 24))
400:                            ^ KW[r++][3];
401:                    C0 = mcol((S[r0 & 255] & 255)
402:                            ^ ((S[(r1 >> 8) & 255] & 255) << 8)
403:                            ^ ((S[(r2 >> 16) & 255] & 255) << 16)
404:                            ^ (S[(r3 >> 24) & 255] << 24))
405:                            ^ KW[r][0];
406:                    C1 = mcol((S[r1 & 255] & 255)
407:                            ^ ((S[(r2 >> 8) & 255] & 255) << 8)
408:                            ^ ((S[(r3 >> 16) & 255] & 255) << 16)
409:                            ^ (S[(r0 >> 24) & 255] << 24))
410:                            ^ KW[r][1];
411:                    C2 = mcol((S[r2 & 255] & 255)
412:                            ^ ((S[(r3 >> 8) & 255] & 255) << 8)
413:                            ^ ((S[(r0 >> 16) & 255] & 255) << 16)
414:                            ^ (S[(r1 >> 24) & 255] << 24))
415:                            ^ KW[r][2];
416:                    C3 = mcol((S[r3 & 255] & 255)
417:                            ^ ((S[(r0 >> 8) & 255] & 255) << 8)
418:                            ^ ((S[(r1 >> 16) & 255] & 255) << 16)
419:                            ^ (S[(r2 >> 24) & 255] << 24))
420:                            ^ KW[r++][3];
421:                }
422:
423:                r0 = mcol((S[C0 & 255] & 255)
424:                        ^ ((S[(C1 >> 8) & 255] & 255) << 8)
425:                        ^ ((S[(C2 >> 16) & 255] & 255) << 16)
426:                        ^ (S[(C3 >> 24) & 255] << 24))
427:                        ^ KW[r][0];
428:                r1 = mcol((S[C1 & 255] & 255)
429:                        ^ ((S[(C2 >> 8) & 255] & 255) << 8)
430:                        ^ ((S[(C3 >> 16) & 255] & 255) << 16)
431:                        ^ (S[(C0 >> 24) & 255] << 24))
432:                        ^ KW[r][1];
433:                r2 = mcol((S[C2 & 255] & 255)
434:                        ^ ((S[(C3 >> 8) & 255] & 255) << 8)
435:                        ^ ((S[(C0 >> 16) & 255] & 255) << 16)
436:                        ^ (S[(C1 >> 24) & 255] << 24))
437:                        ^ KW[r][2];
438:                r3 = mcol((S[C3 & 255] & 255)
439:                        ^ ((S[(C0 >> 8) & 255] & 255) << 8)
440:                        ^ ((S[(C1 >> 16) & 255] & 255) << 16)
441:                        ^ (S[(C2 >> 24) & 255] << 24))
442:                        ^ KW[r++][3];
443:
444:                // the final round is a simple function of S
445:
446:                C0 = (S[r0 & 255] & 255) ^ ((S[(r1 >> 8) & 255] & 255) << 8)
447:                        ^ ((S[(r2 >> 16) & 255] & 255) << 16)
448:                        ^ (S[(r3 >> 24) & 255] << 24) ^ KW[r][0];
449:                C1 = (S[r1 & 255] & 255) ^ ((S[(r2 >> 8) & 255] & 255) << 8)
450:                        ^ ((S[(r3 >> 16) & 255] & 255) << 16)
451:                        ^ (S[(r0 >> 24) & 255] << 24) ^ KW[r][1];
452:                C2 = (S[r2 & 255] & 255) ^ ((S[(r3 >> 8) & 255] & 255) << 8)
453:                        ^ ((S[(r0 >> 16) & 255] & 255) << 16)
454:                        ^ (S[(r1 >> 24) & 255] << 24) ^ KW[r][2];
455:                C3 = (S[r3 & 255] & 255) ^ ((S[(r0 >> 8) & 255] & 255) << 8)
456:                        ^ ((S[(r1 >> 16) & 255] & 255) << 16)
457:                        ^ (S[(r2 >> 24) & 255] << 24) ^ KW[r][3];
458:
459:            }
460:
461:            private final void decryptBlock(int[][] KW) {
462:                int r, r0, r1, r2, r3;
463:
464:                C0 ^= KW[ROUNDS][0];
465:                C1 ^= KW[ROUNDS][1];
466:                C2 ^= KW[ROUNDS][2];
467:                C3 ^= KW[ROUNDS][3];
468:
469:                for (r = ROUNDS - 1; r > 1;) {
470:                    r0 = inv_mcol((Si[C0 & 255] & 255)
471:                            ^ ((Si[(C3 >> 8) & 255] & 255) << 8)
472:                            ^ ((Si[(C2 >> 16) & 255] & 255) << 16)
473:                            ^ (Si[(C1 >> 24) & 255] << 24))
474:                            ^ KW[r][0];
475:                    r1 = inv_mcol((Si[C1 & 255] & 255)
476:                            ^ ((Si[(C0 >> 8) & 255] & 255) << 8)
477:                            ^ ((Si[(C3 >> 16) & 255] & 255) << 16)
478:                            ^ (Si[(C2 >> 24) & 255] << 24))
479:                            ^ KW[r][1];
480:                    r2 = inv_mcol((Si[C2 & 255] & 255)
481:                            ^ ((Si[(C1 >> 8) & 255] & 255) << 8)
482:                            ^ ((Si[(C0 >> 16) & 255] & 255) << 16)
483:                            ^ (Si[(C3 >> 24) & 255] << 24))
484:                            ^ KW[r][2];
485:                    r3 = inv_mcol((Si[C3 & 255] & 255)
486:                            ^ ((Si[(C2 >> 8) & 255] & 255) << 8)
487:                            ^ ((Si[(C1 >> 16) & 255] & 255) << 16)
488:                            ^ (Si[(C0 >> 24) & 255] << 24))
489:                            ^ KW[r--][3];
490:                    C0 = inv_mcol((Si[r0 & 255] & 255)
491:                            ^ ((Si[(r3 >> 8) & 255] & 255) << 8)
492:                            ^ ((Si[(r2 >> 16) & 255] & 255) << 16)
493:                            ^ (Si[(r1 >> 24) & 255] << 24))
494:                            ^ KW[r][0];
495:                    C1 = inv_mcol((Si[r1 & 255] & 255)
496:                            ^ ((Si[(r0 >> 8) & 255] & 255) << 8)
497:                            ^ ((Si[(r3 >> 16) & 255] & 255) << 16)
498:                            ^ (Si[(r2 >> 24) & 255] << 24))
499:                            ^ KW[r][1];
500:                    C2 = inv_mcol((Si[r2 & 255] & 255)
501:                            ^ ((Si[(r1 >> 8) & 255] & 255) << 8)
502:                            ^ ((Si[(r0 >> 16) & 255] & 255) << 16)
503:                            ^ (Si[(r3 >> 24) & 255] << 24))
504:                            ^ KW[r][2];
505:                    C3 = inv_mcol((Si[r3 & 255] & 255)
506:                            ^ ((Si[(r2 >> 8) & 255] & 255) << 8)
507:                            ^ ((Si[(r1 >> 16) & 255] & 255) << 16)
508:                            ^ (Si[(r0 >> 24) & 255] << 24))
509:                            ^ KW[r--][3];
510:                }
511:
512:                r0 = inv_mcol((Si[C0 & 255] & 255)
513:                        ^ ((Si[(C3 >> 8) & 255] & 255) << 8)
514:                        ^ ((Si[(C2 >> 16) & 255] & 255) << 16)
515:                        ^ (Si[(C1 >> 24) & 255] << 24))
516:                        ^ KW[r][0];
517:                r1 = inv_mcol((Si[C1 & 255] & 255)
518:                        ^ ((Si[(C0 >> 8) & 255] & 255) << 8)
519:                        ^ ((Si[(C3 >> 16) & 255] & 255) << 16)
520:                        ^ (Si[(C2 >> 24) & 255] << 24))
521:                        ^ KW[r][1];
522:                r2 = inv_mcol((Si[C2 & 255] & 255)
523:                        ^ ((Si[(C1 >> 8) & 255] & 255) << 8)
524:                        ^ ((Si[(C0 >> 16) & 255] & 255) << 16)
525:                        ^ (Si[(C3 >> 24) & 255] << 24))
526:                        ^ KW[r][2];
527:                r3 = inv_mcol((Si[C3 & 255] & 255)
528:                        ^ ((Si[(C2 >> 8) & 255] & 255) << 8)
529:                        ^ ((Si[(C1 >> 16) & 255] & 255) << 16)
530:                        ^ (Si[(C0 >> 24) & 255] << 24))
531:                        ^ KW[r][3];
532:
533:                // the final round's table is a simple function of Si
534:
535:                C0 = (Si[r0 & 255] & 255) ^ ((Si[(r3 >> 8) & 255] & 255) << 8)
536:                        ^ ((Si[(r2 >> 16) & 255] & 255) << 16)
537:                        ^ (Si[(r1 >> 24) & 255] << 24) ^ KW[0][0];
538:                C1 = (Si[r1 & 255] & 255) ^ ((Si[(r0 >> 8) & 255] & 255) << 8)
539:                        ^ ((Si[(r3 >> 16) & 255] & 255) << 16)
540:                        ^ (Si[(r2 >> 24) & 255] << 24) ^ KW[0][1];
541:                C2 = (Si[r2 & 255] & 255) ^ ((Si[(r1 >> 8) & 255] & 255) << 8)
542:                        ^ ((Si[(r0 >> 16) & 255] & 255) << 16)
543:                        ^ (Si[(r3 >> 24) & 255] << 24) ^ KW[0][2];
544:                C3 = (Si[r3 & 255] & 255) ^ ((Si[(r2 >> 8) & 255] & 255) << 8)
545:                        ^ ((Si[(r1 >> 16) & 255] & 255) << 16)
546:                        ^ (Si[(r0 >> 24) & 255] << 24) ^ KW[0][3];
547:            }
548:        }
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.