Source Code Cross Referenced for LambertConformal.java in  » GIS » GeoTools-2.4.1 » org » geotools » referencing » operation » projection » Java Source Code / Java DocumentationJava Source Code and Java Documentation

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » GIS » GeoTools 2.4.1 » org.geotools.referencing.operation.projection 
Source Cross Referenced  Class Diagram Java Document (Java Doc) 


001:        /*
002:         *    GeoTools - OpenSource mapping toolkit
003:         *    http://geotools.org
004:         *
005:         *   (C) 2003, 2004 Geotools Project Managment Committee (PMC)
006:         *   (C) 2001, Institut de Recherche pour le Développement
007:         *   (C) 2000, Frank Warmerdam
008:         *   (C) 1999, Fisheries and Oceans Canada
009:         *
010:         *    This library is free software; you can redistribute it and/or
011:         *    modify it under the terms of the GNU Lesser General Public
012:         *    License as published by the Free Software Foundation; either
013:         *    version 2.1 of the License, or (at your option) any later version.
014:         *
015:         *    This library is distributed in the hope that it will be useful,
016:         *    but WITHOUT ANY WARRANTY; without even the implied warranty of
017:         *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
018:         *    Lesser General Public License for more details.
019:         *
020:         *    This package contains formulas from the PROJ package of USGS.
021:         *    USGS's work is fully acknowledged here. This derived work has
022:         *    been relicensed under LGPL with Frank Warmerdam's permission.
023:         */
024:        package org.geotools.referencing.operation.projection;
025:
026:        // J2SE dependencies
027:        import java.awt.geom.Point2D;
028:        import java.util.Collection;
029:
030:        // OpenGIS dependencies
031:        import org.opengis.parameter.ParameterValueGroup;
032:        import org.opengis.parameter.ParameterNotFoundException;
033:
034:        // Geotools dependencies
035:        import org.geotools.measure.Latitude;
036:        import org.geotools.resources.i18n.Errors;
037:        import org.geotools.resources.i18n.ErrorKeys;
038:
039:        /**
040:         * Lambert Conical Conformal Projection.  Areas and shapes are deformed
041:         * as one moves away from standard parallels.  The angles are true in
042:         * a limited area.  This projection is used for the charts of North America.
043:         * <p>
044:         *
045:         * This implementation provides transforms for three cases of the lambert conic 
046:         * conformal projection:
047:         * <ul>
048:         *   <li>{@code Lambert_Conformal_Conic_1SP} (EPSG code 9801)</li>
049:         *   <li>{@code Lambert_Conformal_Conic_2SP} (EPSG code 9802)</li>
050:         *   <li>{@code Lambert_Conic_Conformal_2SP_Belgium} (EPSG code 9803)</li>
051:         *   <li>{@code Lambert_Conformal_Conic} - An alias for the ESRI 2SP case
052:         *       that includes a scale_factor parameter</li>
053:         * </ul>
054:         *
055:         * For the 1SP case the latitude of origin is used as the standard parallel (SP). 
056:         * To use 1SP with a latitude of origin different from the SP, use the 2SP
057:         * and set the SP1 to the single SP. The "standard_parallel_2" 
058:         * parameter is optional and will be given the same value as "standard_parallel_1" 
059:         * if not set (creating a 1 standard parallel projection). 
060:         * <p>
061:         *
062:         * <strong>References:</strong><ul>
063:         *   <li>John P. Snyder (Map Projections - A Working Manual,<br>
064:         *       U.S. Geological Survey Professional Paper 1395, 1987)</li>
065:         *   <li>"Coordinate Conversions and Transformations including Formulas",<br>
066:         *       EPSG Guidence Note Number 7, Version 19.</li>
067:         * </ul>
068:         *
069:         * @see <A HREF="http://mathworld.wolfram.com/LambertConformalConicProjection.html">Lambert conformal conic projection on MathWorld</A>
070:         * @see <A HREF="http://www.remotesensing.org/geotiff/proj_list/lambert_conic_conformal_1sp.html">lambert_conic_conformal_1sp</A>
071:         * @see <A HREF="http://www.remotesensing.org/geotiff/proj_list/lambert_conic_conformal_2sp.html">lambert_conic_conformal_2sp</A>
072:         * @see <A HREF="http://www.remotesensing.org/geotiff/proj_list/lambert_conic_conformal_2sp_belgium.html">lambert_conic_conformal_2sp_belgium</A>
073:         *
074:         * @since 2.1
075:         * @source $URL: http://svn.geotools.org/geotools/tags/2.4.1/modules/library/referencing/src/main/java/org/geotools/referencing/operation/projection/LambertConformal.java $
076:         * @version $Id: LambertConformal.java 25485 2007-05-11 19:12:35Z desruisseaux $
077:         * @author André Gosselin
078:         * @author Martin Desruisseaux
079:         * @author Rueben Schulz
080:         */
081:        public abstract class LambertConformal extends MapProjection {
082:            /**
083:             * Maximum difference allowed when comparing real numbers.
084:             */
085:            private static final double EPSILON = 1E-6;
086:
087:            /** 
088:             * Constant for the belgium 2SP case. This is 29.2985 seconds, given here in radians.
089:             */
090:            private static final double BELGE_A = 0.00014204313635987700;
091:
092:            /**
093:             * Standards parallel 1 in radians, for {@link #getParameterValues} implementation.
094:             */
095:            private final double phi1;
096:
097:            /**
098:             * Standards parallel 2 in radians, for {@link #getParameterValues} implementation.
099:             */
100:            final private double phi2;
101:
102:            /**
103:             * Internal variables for computation.
104:             */
105:            private final double n, F, rho0;
106:
107:            /**
108:             * {@code true} for Belgium 2SP.
109:             */
110:            private final boolean belgium;
111:
112:            /**
113:             * Constructs a new map projection from the supplied parameters.
114:             *
115:             * @param  parameters The parameter values in standard units.
116:             * @throws ParameterNotFoundException if a mandatory parameter is missing.
117:             */
118:            protected LambertConformal(final ParameterValueGroup parameters)
119:                    throws ParameterNotFoundException {
120:                this (parameters, false);
121:            }
122:
123:            /**
124:             * Constructs a new map projection from the supplied parameters.
125:             *
126:             * @param  parameters The parameter values in standard units.
127:             * @param  belgium {@code true} for the Belgium 2SP case.
128:             * @throws ParameterNotFoundException if a mandatory parameter is missing.
129:             */
130:            LambertConformal(final ParameterValueGroup parameters,
131:                    final boolean belgium) throws ParameterNotFoundException {
132:                //Fetch parameters 
133:                super (parameters);
134:                final Collection expected = getParameterDescriptors()
135:                        .descriptors();
136:                final boolean sp2 = expected
137:                        .contains(AbstractProvider.STANDARD_PARALLEL_2);
138:                this .belgium = belgium;
139:                if (sp2) {
140:                    double phi2;
141:                    phi1 = doubleValue(expected,
142:                            AbstractProvider.STANDARD_PARALLEL_1, parameters);
143:                    ensureLatitudeInRange(AbstractProvider.STANDARD_PARALLEL_1,
144:                            phi1, true);
145:                    phi2 = doubleValue(expected,
146:                            AbstractProvider.STANDARD_PARALLEL_2, parameters);
147:                    if (Double.isNaN(phi2)) {
148:                        phi2 = phi1;
149:                    }
150:                    this .phi2 = phi2;
151:                    ensureLatitudeInRange(AbstractProvider.STANDARD_PARALLEL_2,
152:                            phi2, true);
153:                } else {
154:                    if (belgium) {
155:                        throw new IllegalArgumentException();
156:                    }
157:                    // EPSG says the 1SP case uses the latitude of origin as the SP
158:                    phi1 = phi2 = latitudeOfOrigin;
159:                }
160:                // Compute constants
161:                if (Math.abs(phi1 + phi2) < EPSILON) {
162:                    throw new IllegalArgumentException(Errors.format(
163:                            ErrorKeys.ANTIPODE_LATITUDES_$2, new Latitude(Math
164:                                    .toDegrees(phi1)), new Latitude(Math
165:                                    .toDegrees(phi2))));
166:                }
167:                final double cosphi1 = Math.cos(phi1);
168:                final double sinphi1 = Math.sin(phi1);
169:                final boolean secant = Math.abs(phi1 - phi2) > EPSILON; // Should be 'true' for 2SP case.
170:                if (isSpherical) {
171:                    if (secant) {
172:                        n = Math.log(cosphi1 / Math.cos(phi2))
173:                                / Math.log(Math.tan((Math.PI / 4) + 0.5 * phi2)
174:                                        / Math.tan((Math.PI / 4) + 0.5 * phi1));
175:                    } else {
176:                        n = sinphi1;
177:                    }
178:                    F = cosphi1
179:                            * Math.pow(Math.tan((Math.PI / 4) + 0.5 * phi1), n)
180:                            / n;
181:                    if (Math.abs(Math.abs(latitudeOfOrigin) - (Math.PI / 2)) >= EPSILON) {
182:                        rho0 = F
183:                                * Math.pow(Math.tan((Math.PI / 4) + 0.5
184:                                        * latitudeOfOrigin), -n);
185:                    } else {
186:                        rho0 = 0.0;
187:                    }
188:                } else {
189:                    final double m1 = msfn(sinphi1, cosphi1);
190:                    final double t1 = tsfn(phi1, sinphi1);
191:                    if (secant) {
192:                        final double sinphi2 = Math.sin(phi2);
193:                        final double m2 = msfn(sinphi2, Math.cos(phi2));
194:                        final double t2 = tsfn(phi2, sinphi2);
195:                        n = Math.log(m1 / m2) / Math.log(t1 / t2);
196:                    } else {
197:                        n = sinphi1;
198:                    }
199:                    F = m1 * Math.pow(t1, -n) / n;
200:                    if (Math.abs(Math.abs(latitudeOfOrigin) - (Math.PI / 2)) >= EPSILON) {
201:                        rho0 = F
202:                                * Math.pow(tsfn(latitudeOfOrigin, Math
203:                                        .sin(latitudeOfOrigin)), n);
204:                    } else {
205:                        rho0 = 0.0;
206:                    }
207:                }
208:            }
209:
210:            /**
211:             * {@inheritDoc}
212:             */
213:            public ParameterValueGroup getParameterValues() {
214:                final ParameterValueGroup values = super .getParameterValues();
215:                final Collection expected = getParameterDescriptors()
216:                        .descriptors();
217:                set(expected, AbstractProvider.STANDARD_PARALLEL_1, values,
218:                        phi1);
219:                set(expected, AbstractProvider.STANDARD_PARALLEL_2, values,
220:                        phi2);
221:                return values;
222:            }
223:
224:            /**
225:             * Transforms the specified (<var>&lambda;</var>,<var>&phi;</var>) coordinates
226:             * (units in radians) and stores the result in {@code ptDst} (linear distance
227:             * on a unit sphere).
228:             */
229:            protected Point2D transformNormalized(double x, double y,
230:                    Point2D ptDst) throws ProjectionException {
231:                double rho;
232:                //Snyder p. 108
233:                if (Math.abs(Math.abs(y) - (Math.PI / 2)) < EPSILON) {
234:                    if (y * n <= 0) {
235:                        throw new ProjectionException(Errors.format(
236:                                ErrorKeys.POLE_PROJECTION_$1, new Latitude(Math
237:                                        .toDegrees(y))));
238:                    } else {
239:                        rho = 0;
240:                    }
241:                } else if (isSpherical) {
242:                    rho = F * Math.pow(Math.tan((Math.PI / 4) + 0.5 * y), -n);
243:                } else {
244:                    rho = F * Math.pow(tsfn(y, Math.sin(y)), n);
245:                }
246:
247:                x *= n;
248:                if (belgium) {
249:                    x -= BELGE_A;
250:                }
251:                y = rho0 - rho * Math.cos(x);
252:                x = rho * Math.sin(x);
253:
254:                if (ptDst != null) {
255:                    ptDst.setLocation(x, y);
256:                    return ptDst;
257:                }
258:                return new Point2D.Double(x, y);
259:            }
260:
261:            /**
262:             * Transforms the specified (<var>x</var>,<var>y</var>) coordinates
263:             * and stores the result in {@code ptDst}.
264:             */
265:            protected Point2D inverseTransformNormalized(double x, double y,
266:                    Point2D ptDst) throws ProjectionException {
267:                double theta;
268:                y = rho0 - y;
269:                double rho = Math.sqrt(x * x + y * y); // Zero when the latitude is 90 degrees.
270:                if (rho > EPSILON) {
271:                    if (n < 0) {
272:                        rho = -rho;
273:                        x = -x;
274:                        y = -y;
275:                    }
276:                    theta = Math.atan2(x, y);
277:                    if (belgium) {
278:                        theta += BELGE_A;
279:                    }
280:                    x = theta / n;
281:                    if (isSpherical) {
282:                        y = 2.0 * Math.atan(Math.pow(F / rho, 1.0 / n))
283:                                - (Math.PI / 2);
284:                    } else {
285:                        y = cphi2(Math.pow(rho / F, 1.0 / n));
286:                    }
287:                } else {
288:                    x = 0.0;
289:                    y = n < 0 ? -(Math.PI / 2) : (Math.PI / 2);
290:                }
291:                if (ptDst != null) {
292:                    ptDst.setLocation(x, y);
293:                    return ptDst;
294:                }
295:                return new Point2D.Double(x, y);
296:            }
297:
298:            /**
299:             * Returns a hash value for this projection.
300:             */
301:            public int hashCode() {
302:                /*
303:                 * This code should be computed fast. Consequently, we do not use all fields
304:                 * in this object.  Two {@code LambertConformal} objects with different
305:                 * {@link #phi1} and {@link #phi2} should compute a F value different enough.
306:                 */
307:                final long code = Double.doubleToLongBits(F);
308:                return ((int) code ^ (int) (code >>> 32)) + 37
309:                        * super .hashCode();
310:            }
311:
312:            /**
313:             * Compares the specified object with this map projection for equality.
314:             */
315:            public boolean equals(final Object object) {
316:                if (object == this ) {
317:                    // Slight optimization
318:                    return true;
319:                }
320:                if (super .equals(object)) {
321:                    final LambertConformal that = (LambertConformal) object;
322:                    return (this .belgium == that.belgium)
323:                            && equals(this .n, that.n) && equals(this .F, that.F)
324:                            && equals(this .rho0, that.rho0)
325:                            && equals(this .phi1, that.phi1)
326:                            && equals(this .phi2, that.phi2);
327:                }
328:                return false;
329:            }
330:        }
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.