Java Doc for TokenSources.java in  » Net » lucene-connector » org » apache » lucene » search » highlight » Java Source Code / Java DocumentationJava Source Code and Java Documentation

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » Net » lucene connector » org.apache.lucene.search.highlight 
Source Cross Reference  Class Diagram Java Document (Java Doc) 


java.lang.Object
   org.apache.lucene.search.highlight.TokenSources

TokenSources
public class TokenSources (Code)
Hides implementation issues associated with obtaining a TokenStream for use with the higlighter - can obtain from TermFreqVectors with offsets and (optionally) positions or from Analyzer class reparsing the stored content.
author:
   maharwood




Method Summary
public static  TokenStreamgetAnyTokenStream(IndexReader reader, int docId, String field, Analyzer analyzer)
     A convenience method that tries a number of approaches to getting a token stream. The cost of finding there are no termVectors in the index is minimal (1000 invocations still registers 0 ms).
public static  TokenStreamgetTokenStream(TermPositionVector tpv)
    
public static  TokenStreamgetTokenStream(TermPositionVector tpv, boolean tokenPositionsGuaranteedContiguous)
     Low level api. Returns a token stream or null if no offset info available in index. This can be used to feed the highlighter with a pre-parsed token stream In my tests the speeds to recreate 1000 token streams using this method are: - with TermVector offset only data stored - 420 milliseconds - with TermVector offset AND position data stored - 271 milliseconds (nb timings for TermVector with position data are based on a tokenizer with contiguous positions - no overlaps or gaps) The cost of not using TermPositionVector to store pre-parsed content and using an analyzer to re-parse the original content: - reanalyzing the original content - 980 milliseconds The re-analyze timings will typically vary depending on - 1) The complexity of the analyzer code (timings above were using a stemmer/lowercaser/stopword combo) 2) The number of other fields (Lucene reads ALL fields off the disk when accessing just one document field - can cost dear!) 3) Use of compression on field storage - could be faster cos of compression (less disk IO) or slower (more CPU burn) depending on the content.
Parameters:
  tpv -
Parameters:
  tokenPositionsGuaranteedContiguous - true if the token position numbers have no overlaps or gaps.
public static  TokenStreamgetTokenStream(IndexReader reader, int docId, String field)
    
public static  TokenStreamgetTokenStream(IndexReader reader, int docId, String field, Analyzer analyzer)
    



Method Detail
getAnyTokenStream
public static TokenStream getAnyTokenStream(IndexReader reader, int docId, String field, Analyzer analyzer) throws IOException(Code)
A convenience method that tries a number of approaches to getting a token stream. The cost of finding there are no termVectors in the index is minimal (1000 invocations still registers 0 ms). So this "lazy" (flexible?) approach to coding is probably acceptable
Parameters:
  reader -
Parameters:
  docId -
Parameters:
  field -
Parameters:
  analyzer - null if field not stored correctly
throws:
  IOException -



getTokenStream
public static TokenStream getTokenStream(TermPositionVector tpv)(Code)



getTokenStream
public static TokenStream getTokenStream(TermPositionVector tpv, boolean tokenPositionsGuaranteedContiguous)(Code)
Low level api. Returns a token stream or null if no offset info available in index. This can be used to feed the highlighter with a pre-parsed token stream In my tests the speeds to recreate 1000 token streams using this method are: - with TermVector offset only data stored - 420 milliseconds - with TermVector offset AND position data stored - 271 milliseconds (nb timings for TermVector with position data are based on a tokenizer with contiguous positions - no overlaps or gaps) The cost of not using TermPositionVector to store pre-parsed content and using an analyzer to re-parse the original content: - reanalyzing the original content - 980 milliseconds The re-analyze timings will typically vary depending on - 1) The complexity of the analyzer code (timings above were using a stemmer/lowercaser/stopword combo) 2) The number of other fields (Lucene reads ALL fields off the disk when accessing just one document field - can cost dear!) 3) Use of compression on field storage - could be faster cos of compression (less disk IO) or slower (more CPU burn) depending on the content.
Parameters:
  tpv -
Parameters:
  tokenPositionsGuaranteedContiguous - true if the token position numbers have no overlaps or gaps. If lookingto eek out the last drops of performance, set to true. If in doubt, set to false.



getTokenStream
public static TokenStream getTokenStream(IndexReader reader, int docId, String field) throws IOException(Code)



getTokenStream
public static TokenStream getTokenStream(IndexReader reader, int docId, String field, Analyzer analyzer) throws IOException(Code)



Methods inherited from java.lang.Object
native protected Object clone() throws CloneNotSupportedException(Code)(Java Doc)
public boolean equals(Object obj)(Code)(Java Doc)
protected void finalize() throws Throwable(Code)(Java Doc)
final native public Class getClass()(Code)(Java Doc)
native public int hashCode()(Code)(Java Doc)
final native public void notify()(Code)(Java Doc)
final native public void notifyAll()(Code)(Java Doc)
public String toString()(Code)(Java Doc)
final native public void wait(long timeout) throws InterruptedException(Code)(Java Doc)
final public void wait(long timeout, int nanos) throws InterruptedException(Code)(Java Doc)
final public void wait() throws InterruptedException(Code)(Java Doc)

www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.