weka.clusterers

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » Science » weka » weka.clusterers 
weka.clusterers
Java Source File NameTypeComment
CheckClusterer.javaClass Class for examining the capabilities and finding problems with clusterers.
Clusterer.javaClass Abstract clusterer.
ClusterEvaluation.javaClass Class for evaluating clustering models.

Valid options are:

-t name of the training file
Specify the training file.

Cobweb.javaClass Class implementing the Cobweb and Classit clustering algorithms.

Note: the application of node operators (merging, splitting etc.) in terms of ordering and priority differs (and is somewhat ambiguous) between the original Cobweb and Classit papers.
DBScan.javaClass Martin Ester, Hans-Peter Kriegel, Joerg Sander, Xiaowei Xu: A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise.
DensityBasedClusterer.javaClass Abstract clustering model that produces (for each test instance) an estimate of the membership in each cluster (ie.
EM.javaClass Simple EM (expectation maximisation) class.

EM assigns a probability distribution to each instance which indicates the probability of it belonging to each of the clusters.
FarthestFirst.javaClass Cluster data using the FarthestFirst algorithm.

For more information see:

Hochbaum, Shmoys (1985).
FilteredClusterer.javaClass Class for running an arbitrary clusterer on data that has been passed through an arbitrary filter.
MakeDensityBasedClusterer.javaClass Class for wrapping a Clusterer to make it return a distribution and density.
NumberOfClustersRequestable.javaInterface
OPTICS.javaClass Mihael Ankerst, Markus M.
RandomizableClusterer.javaClass Abstract utility class for handling settings common to randomizable clusterers.
RandomizableDensityBasedClusterer.javaClass Abstract utility class for handling settings common to randomizable clusterers.
RandomizableSingleClustererEnhancer.javaClass Abstract utility class for handling settings common to randomizable clusterers.
SimpleKMeans.javaClass Cluster data using the k means algorithm

Valid options are:

 -N <num>
 number of clusters.
SingleClustererEnhancer.javaClass Meta-clusterer for enhancing a base clusterer.
UpdateableClusterer.javaInterface Interface to incremental cluster models that can learn using one instance at a time.
XMeans.javaClass Cluster data using the X-means algorithm.

X-Means is K-Means extended by an Improve-Structure part In this part of the algorithm the centers are attempted to be split in its region.
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.