Source Code Cross Referenced for DensityBasedClusterer.java in  » Science » weka » weka » clusterers » Java Source Code / Java DocumentationJava Source Code and Java Documentation

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » Science » weka » weka.clusterers 
Source Cross Referenced  Class Diagram Java Document (Java Doc) 


001:        /*
002:         *    This program is free software; you can redistribute it and/or modify
003:         *    it under the terms of the GNU General Public License as published by
004:         *    the Free Software Foundation; either version 2 of the License, or
005:         *    (at your option) any later version.
006:         *
007:         *    This program is distributed in the hope that it will be useful,
008:         *    but WITHOUT ANY WARRANTY; without even the implied warranty of
009:         *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
010:         *    GNU General Public License for more details.
011:         *
012:         *    You should have received a copy of the GNU General Public License
013:         *    along with this program; if not, write to the Free Software
014:         *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
015:         */
016:
017:        /*
018:         *    DensityBasedClusterer.java
019:         *    Copyright (C) 1999 University of Waikato, Hamilton, New Zealand
020:         *
021:         */
022:
023:        package weka.clusterers;
024:
025:        import weka.core.Instance;
026:        import weka.core.SerializedObject;
027:        import weka.core.Utils;
028:
029:        /** 
030:         * Abstract clustering model that produces (for each test instance)
031:         * an estimate of the membership in each cluster 
032:         * (ie. a probability distribution).
033:         *
034:         * @author   Mark Hall (mhall@cs.waikato.ac.nz)
035:         * @author Eibe Frank (eibe@cs.waikato.ac.nz)
036:         * @version  $Revision: 1.7 $
037:         */
038:        public abstract class DensityBasedClusterer extends Clusterer {
039:
040:            /** for serialization */
041:            private static final long serialVersionUID = -5950728041704213845L;
042:
043:            // ===============
044:            // Public methods.
045:            // ===============
046:
047:            /**
048:             * Returns the prior probability of each cluster.
049:             *
050:             * @return the prior probability for each cluster
051:             * @exception Exception if priors could not be 
052:             * returned successfully
053:             */
054:            public abstract double[] clusterPriors() throws Exception;
055:
056:            /**
057:             * Computes the log of the conditional density (per cluster) for a given instance.
058:             * 
059:             * @param instance the instance to compute the density for
060:             * @return an array containing the estimated densities
061:             * @exception Exception if the density could not be computed
062:             * successfully
063:             */
064:            public abstract double[] logDensityPerClusterForInstance(
065:                    Instance instance) throws Exception;
066:
067:            /**
068:             * Computes the density for a given instance.
069:             * 
070:             * @param instance the instance to compute the density for
071:             * @return the density.
072:             * @exception Exception if the density could not be computed successfully
073:             */
074:            public double logDensityForInstance(Instance instance)
075:                    throws Exception {
076:
077:                double[] a = logJointDensitiesForInstance(instance);
078:                double max = a[Utils.maxIndex(a)];
079:                double sum = 0.0;
080:
081:                for (int i = 0; i < a.length; i++) {
082:                    sum += Math.exp(a[i] - max);
083:                }
084:
085:                return max + Math.log(sum);
086:            }
087:
088:            /**
089:             * Returns the cluster probability distribution for an instance.
090:             *
091:             * @param instance the instance to be clustered
092:             * @return the probability distribution
093:             * @throws Exception if computation fails
094:             */
095:            public double[] distributionForInstance(Instance instance)
096:                    throws Exception {
097:
098:                return Utils.logs2probs(logJointDensitiesForInstance(instance));
099:            }
100:
101:            /** 
102:             * Returns the logs of the joint densities for a given instance.
103:             *
104:             * @param inst the instance 
105:             * @return the array of values
106:             * @exception Exception if values could not be computed
107:             */
108:            public double[] logJointDensitiesForInstance(Instance inst)
109:                    throws Exception {
110:
111:                double[] weights = logDensityPerClusterForInstance(inst);
112:                double[] priors = clusterPriors();
113:
114:                for (int i = 0; i < weights.length; i++) {
115:                    if (priors[i] > 0) {
116:                        weights[i] += Math.log(priors[i]);
117:                    } else {
118:                        throw new IllegalArgumentException("Cluster empty!");
119:                    }
120:                }
121:                return weights;
122:            }
123:
124:            /**
125:             * Creates copies of the current clusterer. Note that this method
126:             * now uses Serialization to perform a deep copy, so the Clusterer
127:             * object must be fully Serializable. Any currently built model will
128:             * now be copied as well.
129:             *
130:             * @param model an example clusterer to copy
131:             * @param num the number of clusterer copies to create.
132:             * @return an array of clusterers.
133:             * @exception Exception if an error occurs 
134:             */
135:            public static DensityBasedClusterer[] makeCopies(
136:                    DensityBasedClusterer model, int num) throws Exception {
137:                if (model == null) {
138:                    throw new Exception("No model clusterer set");
139:                }
140:                DensityBasedClusterer[] clusterers = new DensityBasedClusterer[num];
141:                SerializedObject so = new SerializedObject(model);
142:                for (int i = 0; i < clusterers.length; i++) {
143:                    clusterers[i] = (DensityBasedClusterer) so.getObject();
144:                }
145:                return clusterers;
146:            }
147:        }
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.