Source Code Cross Referenced for Bagging.java in  » Science » weka » weka » classifiers » meta » Java Source Code / Java DocumentationJava Source Code and Java Documentation

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » Science » weka » weka.classifiers.meta 
Source Cross Referenced  Class Diagram Java Document (Java Doc) 


001:        /*
002:         *    This program is free software; you can redistribute it and/or modify
003:         *    it under the terms of the GNU General Public License as published by
004:         *    the Free Software Foundation; either version 2 of the License, or
005:         *    (at your option) any later version.
006:         *
007:         *    This program is distributed in the hope that it will be useful,
008:         *    but WITHOUT ANY WARRANTY; without even the implied warranty of
009:         *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
010:         *    GNU General Public License for more details.
011:         *
012:         *    You should have received a copy of the GNU General Public License
013:         *    along with this program; if not, write to the Free Software
014:         *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
015:         */
016:
017:        /*
018:         *    Bagging.java
019:         *    Copyright (C) 1999 University of Waikato, Hamilton, New Zealand
020:         *
021:         */
022:
023:        package weka.classifiers.meta;
024:
025:        import weka.classifiers.RandomizableIteratedSingleClassifierEnhancer;
026:        import weka.core.AdditionalMeasureProducer;
027:        import weka.core.Instance;
028:        import weka.core.Instances;
029:        import weka.core.Option;
030:        import weka.core.Randomizable;
031:        import weka.core.TechnicalInformation;
032:        import weka.core.TechnicalInformationHandler;
033:        import weka.core.Utils;
034:        import weka.core.WeightedInstancesHandler;
035:        import weka.core.TechnicalInformation.Field;
036:        import weka.core.TechnicalInformation.Type;
037:
038:        import java.util.Enumeration;
039:        import java.util.Random;
040:        import java.util.Vector;
041:
042:        /**
043:         <!-- globalinfo-start -->
044:         * Class for bagging a classifier to reduce variance. Can do classification and regression depending on the base learner. <br/>
045:         * <br/>
046:         * For more information, see<br/>
047:         * <br/>
048:         * Leo Breiman (1996). Bagging predictors. Machine Learning. 24(2):123-140.
049:         * <p/>
050:         <!-- globalinfo-end -->
051:         *
052:         <!-- technical-bibtex-start -->
053:         * BibTeX:
054:         * <pre>
055:         * &#64;article{Breiman1996,
056:         *    author = {Leo Breiman},
057:         *    journal = {Machine Learning},
058:         *    number = {2},
059:         *    pages = {123-140},
060:         *    title = {Bagging predictors},
061:         *    volume = {24},
062:         *    year = {1996}
063:         * }
064:         * </pre>
065:         * <p/>
066:         <!-- technical-bibtex-end -->
067:         *
068:         <!-- options-start -->
069:         * Valid options are: <p/>
070:         * 
071:         * <pre> -P
072:         *  Size of each bag, as a percentage of the
073:         *  training set size. (default 100)</pre>
074:         * 
075:         * <pre> -O
076:         *  Calculate the out of bag error.</pre>
077:         * 
078:         * <pre> -S &lt;num&gt;
079:         *  Random number seed.
080:         *  (default 1)</pre>
081:         * 
082:         * <pre> -I &lt;num&gt;
083:         *  Number of iterations.
084:         *  (default 10)</pre>
085:         * 
086:         * <pre> -D
087:         *  If set, classifier is run in debug mode and
088:         *  may output additional info to the console</pre>
089:         * 
090:         * <pre> -W
091:         *  Full name of base classifier.
092:         *  (default: weka.classifiers.trees.REPTree)</pre>
093:         * 
094:         * <pre> 
095:         * Options specific to classifier weka.classifiers.trees.REPTree:
096:         * </pre>
097:         * 
098:         * <pre> -M &lt;minimum number of instances&gt;
099:         *  Set minimum number of instances per leaf (default 2).</pre>
100:         * 
101:         * <pre> -V &lt;minimum variance for split&gt;
102:         *  Set minimum numeric class variance proportion
103:         *  of train variance for split (default 1e-3).</pre>
104:         * 
105:         * <pre> -N &lt;number of folds&gt;
106:         *  Number of folds for reduced error pruning (default 3).</pre>
107:         * 
108:         * <pre> -S &lt;seed&gt;
109:         *  Seed for random data shuffling (default 1).</pre>
110:         * 
111:         * <pre> -P
112:         *  No pruning.</pre>
113:         * 
114:         * <pre> -L
115:         *  Maximum tree depth (default -1, no maximum)</pre>
116:         * 
117:         <!-- options-end -->
118:         *
119:         * Options after -- are passed to the designated classifier.<p>
120:         *
121:         * @author Eibe Frank (eibe@cs.waikato.ac.nz)
122:         * @author Len Trigg (len@reeltwo.com)
123:         * @author Richard Kirkby (rkirkby@cs.waikato.ac.nz)
124:         * @version $Revision: 1.39 $
125:         */
126:        public class Bagging extends
127:                RandomizableIteratedSingleClassifierEnhancer implements 
128:                WeightedInstancesHandler, AdditionalMeasureProducer,
129:                TechnicalInformationHandler {
130:
131:            /** for serialization */
132:            static final long serialVersionUID = -505879962237199703L;
133:
134:            /** The size of each bag sample, as a percentage of the training size */
135:            protected int m_BagSizePercent = 100;
136:
137:            /** Whether to calculate the out of bag error */
138:            protected boolean m_CalcOutOfBag = false;
139:
140:            /** The out of bag error that has been calculated */
141:            protected double m_OutOfBagError;
142:
143:            /**
144:             * Constructor.
145:             */
146:            public Bagging() {
147:
148:                m_Classifier = new weka.classifiers.trees.REPTree();
149:            }
150:
151:            /**
152:             * Returns a string describing classifier
153:             * @return a description suitable for
154:             * displaying in the explorer/experimenter gui
155:             */
156:            public String globalInfo() {
157:
158:                return "Class for bagging a classifier to reduce variance. Can do classification "
159:                        + "and regression depending on the base learner. \n\n"
160:                        + "For more information, see\n\n"
161:                        + getTechnicalInformation().toString();
162:            }
163:
164:            /**
165:             * Returns an instance of a TechnicalInformation object, containing 
166:             * detailed information about the technical background of this class,
167:             * e.g., paper reference or book this class is based on.
168:             * 
169:             * @return the technical information about this class
170:             */
171:            public TechnicalInformation getTechnicalInformation() {
172:                TechnicalInformation result;
173:
174:                result = new TechnicalInformation(Type.ARTICLE);
175:                result.setValue(Field.AUTHOR, "Leo Breiman");
176:                result.setValue(Field.YEAR, "1996");
177:                result.setValue(Field.TITLE, "Bagging predictors");
178:                result.setValue(Field.JOURNAL, "Machine Learning");
179:                result.setValue(Field.VOLUME, "24");
180:                result.setValue(Field.NUMBER, "2");
181:                result.setValue(Field.PAGES, "123-140");
182:
183:                return result;
184:            }
185:
186:            /**
187:             * String describing default classifier.
188:             * 
189:             * @return the default classifier classname
190:             */
191:            protected String defaultClassifierString() {
192:
193:                return "weka.classifiers.trees.REPTree";
194:            }
195:
196:            /**
197:             * Returns an enumeration describing the available options.
198:             *
199:             * @return an enumeration of all the available options.
200:             */
201:            public Enumeration listOptions() {
202:
203:                Vector newVector = new Vector(2);
204:
205:                newVector.addElement(new Option(
206:                        "\tSize of each bag, as a percentage of the\n"
207:                                + "\ttraining set size. (default 100)", "P", 1,
208:                        "-P"));
209:                newVector.addElement(new Option(
210:                        "\tCalculate the out of bag error.", "O", 0, "-O"));
211:
212:                Enumeration enu = super .listOptions();
213:                while (enu.hasMoreElements()) {
214:                    newVector.addElement(enu.nextElement());
215:                }
216:                return newVector.elements();
217:            }
218:
219:            /**
220:             * Parses a given list of options. <p/>
221:             *
222:             <!-- options-start -->
223:             * Valid options are: <p/>
224:             * 
225:             * <pre> -P
226:             *  Size of each bag, as a percentage of the
227:             *  training set size. (default 100)</pre>
228:             * 
229:             * <pre> -O
230:             *  Calculate the out of bag error.</pre>
231:             * 
232:             * <pre> -S &lt;num&gt;
233:             *  Random number seed.
234:             *  (default 1)</pre>
235:             * 
236:             * <pre> -I &lt;num&gt;
237:             *  Number of iterations.
238:             *  (default 10)</pre>
239:             * 
240:             * <pre> -D
241:             *  If set, classifier is run in debug mode and
242:             *  may output additional info to the console</pre>
243:             * 
244:             * <pre> -W
245:             *  Full name of base classifier.
246:             *  (default: weka.classifiers.trees.REPTree)</pre>
247:             * 
248:             * <pre> 
249:             * Options specific to classifier weka.classifiers.trees.REPTree:
250:             * </pre>
251:             * 
252:             * <pre> -M &lt;minimum number of instances&gt;
253:             *  Set minimum number of instances per leaf (default 2).</pre>
254:             * 
255:             * <pre> -V &lt;minimum variance for split&gt;
256:             *  Set minimum numeric class variance proportion
257:             *  of train variance for split (default 1e-3).</pre>
258:             * 
259:             * <pre> -N &lt;number of folds&gt;
260:             *  Number of folds for reduced error pruning (default 3).</pre>
261:             * 
262:             * <pre> -S &lt;seed&gt;
263:             *  Seed for random data shuffling (default 1).</pre>
264:             * 
265:             * <pre> -P
266:             *  No pruning.</pre>
267:             * 
268:             * <pre> -L
269:             *  Maximum tree depth (default -1, no maximum)</pre>
270:             * 
271:             <!-- options-end -->
272:             *
273:             * Options after -- are passed to the designated classifier.<p>
274:             *
275:             * @param options the list of options as an array of strings
276:             * @throws Exception if an option is not supported
277:             */
278:            public void setOptions(String[] options) throws Exception {
279:
280:                String bagSize = Utils.getOption('P', options);
281:                if (bagSize.length() != 0) {
282:                    setBagSizePercent(Integer.parseInt(bagSize));
283:                } else {
284:                    setBagSizePercent(100);
285:                }
286:
287:                setCalcOutOfBag(Utils.getFlag('O', options));
288:
289:                super .setOptions(options);
290:            }
291:
292:            /**
293:             * Gets the current settings of the Classifier.
294:             *
295:             * @return an array of strings suitable for passing to setOptions
296:             */
297:            public String[] getOptions() {
298:
299:                String[] super Options = super .getOptions();
300:                String[] options = new String[super Options.length + 3];
301:
302:                int current = 0;
303:                options[current++] = "-P";
304:                options[current++] = "" + getBagSizePercent();
305:
306:                if (getCalcOutOfBag()) {
307:                    options[current++] = "-O";
308:                }
309:
310:                System.arraycopy(super Options, 0, options, current,
311:                        super Options.length);
312:
313:                current += super Options.length;
314:                while (current < options.length) {
315:                    options[current++] = "";
316:                }
317:                return options;
318:            }
319:
320:            /**
321:             * Returns the tip text for this property
322:             * @return tip text for this property suitable for
323:             * displaying in the explorer/experimenter gui
324:             */
325:            public String bagSizePercentTipText() {
326:                return "Size of each bag, as a percentage of the training set size.";
327:            }
328:
329:            /**
330:             * Gets the size of each bag, as a percentage of the training set size.
331:             *
332:             * @return the bag size, as a percentage.
333:             */
334:            public int getBagSizePercent() {
335:
336:                return m_BagSizePercent;
337:            }
338:
339:            /**
340:             * Sets the size of each bag, as a percentage of the training set size.
341:             *
342:             * @param newBagSizePercent the bag size, as a percentage.
343:             */
344:            public void setBagSizePercent(int newBagSizePercent) {
345:
346:                m_BagSizePercent = newBagSizePercent;
347:            }
348:
349:            /**
350:             * Returns the tip text for this property
351:             * @return tip text for this property suitable for
352:             * displaying in the explorer/experimenter gui
353:             */
354:            public String calcOutOfBagTipText() {
355:                return "Whether the out-of-bag error is calculated.";
356:            }
357:
358:            /**
359:             * Set whether the out of bag error is calculated.
360:             *
361:             * @param calcOutOfBag whether to calculate the out of bag error
362:             */
363:            public void setCalcOutOfBag(boolean calcOutOfBag) {
364:
365:                m_CalcOutOfBag = calcOutOfBag;
366:            }
367:
368:            /**
369:             * Get whether the out of bag error is calculated.
370:             *
371:             * @return whether the out of bag error is calculated
372:             */
373:            public boolean getCalcOutOfBag() {
374:
375:                return m_CalcOutOfBag;
376:            }
377:
378:            /**
379:             * Gets the out of bag error that was calculated as the classifier
380:             * was built.
381:             *
382:             * @return the out of bag error 
383:             */
384:            public double measureOutOfBagError() {
385:
386:                return m_OutOfBagError;
387:            }
388:
389:            /**
390:             * Returns an enumeration of the additional measure names.
391:             *
392:             * @return an enumeration of the measure names
393:             */
394:            public Enumeration enumerateMeasures() {
395:
396:                Vector newVector = new Vector(1);
397:                newVector.addElement("measureOutOfBagError");
398:                return newVector.elements();
399:            }
400:
401:            /**
402:             * Returns the value of the named measure.
403:             *
404:             * @param additionalMeasureName the name of the measure to query for its value
405:             * @return the value of the named measure
406:             * @throws IllegalArgumentException if the named measure is not supported
407:             */
408:            public double getMeasure(String additionalMeasureName) {
409:
410:                if (additionalMeasureName
411:                        .equalsIgnoreCase("measureOutOfBagError")) {
412:                    return measureOutOfBagError();
413:                } else {
414:                    throw new IllegalArgumentException(additionalMeasureName
415:                            + " not supported (Bagging)");
416:                }
417:            }
418:
419:            /**
420:             * Creates a new dataset of the same size using random sampling
421:             * with replacement according to the given weight vector. The
422:             * weights of the instances in the new dataset are set to one.
423:             * The length of the weight vector has to be the same as the
424:             * number of instances in the dataset, and all weights have to
425:             * be positive.
426:             *
427:             * @param data the data to be sampled from
428:             * @param random a random number generator
429:             * @param sampled indicating which instance has been sampled
430:             * @return the new dataset
431:             * @throws IllegalArgumentException if the weights array is of the wrong
432:             * length or contains negative weights.
433:             */
434:            public final Instances resampleWithWeights(Instances data,
435:                    Random random, boolean[] sampled) {
436:
437:                double[] weights = new double[data.numInstances()];
438:                for (int i = 0; i < weights.length; i++) {
439:                    weights[i] = data.instance(i).weight();
440:                }
441:                Instances newData = new Instances(data, data.numInstances());
442:                if (data.numInstances() == 0) {
443:                    return newData;
444:                }
445:                double[] probabilities = new double[data.numInstances()];
446:                double sumProbs = 0, sumOfWeights = Utils.sum(weights);
447:                for (int i = 0; i < data.numInstances(); i++) {
448:                    sumProbs += random.nextDouble();
449:                    probabilities[i] = sumProbs;
450:                }
451:                Utils.normalize(probabilities, sumProbs / sumOfWeights);
452:
453:                // Make sure that rounding errors don't mess things up
454:                probabilities[data.numInstances() - 1] = sumOfWeights;
455:                int k = 0;
456:                int l = 0;
457:                sumProbs = 0;
458:                while ((k < data.numInstances() && (l < data.numInstances()))) {
459:                    if (weights[l] < 0) {
460:                        throw new IllegalArgumentException(
461:                                "Weights have to be positive.");
462:                    }
463:                    sumProbs += weights[l];
464:                    while ((k < data.numInstances())
465:                            && (probabilities[k] <= sumProbs)) {
466:                        newData.add(data.instance(l));
467:                        sampled[l] = true;
468:                        newData.instance(k).setWeight(1);
469:                        k++;
470:                    }
471:                    l++;
472:                }
473:                return newData;
474:            }
475:
476:            /**
477:             * Bagging method.
478:             *
479:             * @param data the training data to be used for generating the
480:             * bagged classifier.
481:             * @throws Exception if the classifier could not be built successfully
482:             */
483:            public void buildClassifier(Instances data) throws Exception {
484:
485:                // can classifier handle the data?
486:                getCapabilities().testWithFail(data);
487:
488:                // remove instances with missing class
489:                data = new Instances(data);
490:                data.deleteWithMissingClass();
491:
492:                super .buildClassifier(data);
493:
494:                if (m_CalcOutOfBag && (m_BagSizePercent != 100)) {
495:                    throw new IllegalArgumentException(
496:                            "Bag size needs to be 100% if "
497:                                    + "out-of-bag error is to be calculated!");
498:                }
499:
500:                int bagSize = data.numInstances() * m_BagSizePercent / 100;
501:                Random random = new Random(m_Seed);
502:
503:                boolean[][] inBag = null;
504:                if (m_CalcOutOfBag)
505:                    inBag = new boolean[m_Classifiers.length][];
506:
507:                for (int j = 0; j < m_Classifiers.length; j++) {
508:                    Instances bagData = null;
509:
510:                    // create the in-bag dataset
511:                    if (m_CalcOutOfBag) {
512:                        inBag[j] = new boolean[data.numInstances()];
513:                        bagData = resampleWithWeights(data, random, inBag[j]);
514:                    } else {
515:                        bagData = data.resampleWithWeights(random);
516:                        if (bagSize < data.numInstances()) {
517:                            bagData.randomize(random);
518:                            Instances newBagData = new Instances(bagData, 0,
519:                                    bagSize);
520:                            bagData = newBagData;
521:                        }
522:                    }
523:
524:                    if (m_Classifier instanceof  Randomizable) {
525:                        ((Randomizable) m_Classifiers[j]).setSeed(random
526:                                .nextInt());
527:                    }
528:
529:                    // build the classifier
530:                    m_Classifiers[j].buildClassifier(bagData);
531:                }
532:
533:                // calc OOB error?
534:                if (getCalcOutOfBag()) {
535:                    double outOfBagCount = 0.0;
536:                    double errorSum = 0.0;
537:                    boolean numeric = data.classAttribute().isNumeric();
538:
539:                    for (int i = 0; i < data.numInstances(); i++) {
540:                        double vote;
541:                        double[] votes;
542:                        if (numeric)
543:                            votes = new double[1];
544:                        else
545:                            votes = new double[data.numClasses()];
546:
547:                        // determine predictions for instance
548:                        int voteCount = 0;
549:                        for (int j = 0; j < m_Classifiers.length; j++) {
550:                            if (inBag[j][i])
551:                                continue;
552:
553:                            voteCount++;
554:                            double pred = m_Classifiers[j]
555:                                    .classifyInstance(data.instance(i));
556:                            if (numeric)
557:                                votes[0] += pred;
558:                            else
559:                                votes[(int) pred]++;
560:                        }
561:
562:                        // "vote"
563:                        if (numeric)
564:                            vote = votes[0] / voteCount; // average
565:                        else
566:                            vote = Utils.maxIndex(votes); // majority vote
567:
568:                        // error for instance
569:                        outOfBagCount += data.instance(i).weight();
570:                        if (numeric) {
571:                            errorSum += StrictMath.abs(vote
572:                                    - data.instance(i).classValue())
573:                                    * data.instance(i).weight();
574:                        } else {
575:                            if (vote != data.instance(i).classValue())
576:                                errorSum += data.instance(i).weight();
577:                        }
578:                    }
579:
580:                    m_OutOfBagError = errorSum / outOfBagCount;
581:                } else {
582:                    m_OutOfBagError = 0;
583:                }
584:            }
585:
586:            /**
587:             * Calculates the class membership probabilities for the given test
588:             * instance.
589:             *
590:             * @param instance the instance to be classified
591:             * @return preedicted class probability distribution
592:             * @throws Exception if distribution can't be computed successfully 
593:             */
594:            public double[] distributionForInstance(Instance instance)
595:                    throws Exception {
596:
597:                double[] sums = new double[instance.numClasses()], newProbs;
598:
599:                for (int i = 0; i < m_NumIterations; i++) {
600:                    if (instance.classAttribute().isNumeric() == true) {
601:                        sums[0] += m_Classifiers[i].classifyInstance(instance);
602:                    } else {
603:                        newProbs = m_Classifiers[i]
604:                                .distributionForInstance(instance);
605:                        for (int j = 0; j < newProbs.length; j++)
606:                            sums[j] += newProbs[j];
607:                    }
608:                }
609:                if (instance.classAttribute().isNumeric() == true) {
610:                    sums[0] /= (double) m_NumIterations;
611:                    return sums;
612:                } else if (Utils.eq(Utils.sum(sums), 0)) {
613:                    return sums;
614:                } else {
615:                    Utils.normalize(sums);
616:                    return sums;
617:                }
618:            }
619:
620:            /**
621:             * Returns description of the bagged classifier.
622:             *
623:             * @return description of the bagged classifier as a string
624:             */
625:            public String toString() {
626:
627:                if (m_Classifiers == null) {
628:                    return "Bagging: No model built yet.";
629:                }
630:                StringBuffer text = new StringBuffer();
631:                text.append("All the base classifiers: \n\n");
632:                for (int i = 0; i < m_Classifiers.length; i++)
633:                    text.append(m_Classifiers[i].toString() + "\n\n");
634:
635:                if (m_CalcOutOfBag) {
636:                    text
637:                            .append("Out of bag error: "
638:                                    + Utils.doubleToString(m_OutOfBagError, 4)
639:                                    + "\n\n");
640:                }
641:
642:                return text.toString();
643:            }
644:
645:            /**
646:             * Main method for testing this class.
647:             *
648:             * @param argv the options
649:             */
650:            public static void main(String[] argv) {
651:                runClassifier(new Bagging(), argv);
652:            }
653:        }
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.