weka.classifiers.meta

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » Science » weka » weka.classifiers.meta 
weka.classifiers.meta
Java Source File NameTypeComment
AdaBoostM1.javaClass Class for boosting a nominal class classifier using the Adaboost M1 method.
AdditiveRegression.javaClass Meta classifier that enhances the performance of a regression base classifier.
AttributeSelectedClassifier.javaClass Dimensionality of training and test data is reduced by attribute selection before being passed on to a classifier.

Valid options are:

 -E <attribute evaluator specification>
 Full class name of attribute evaluator, followed
 by its options.
 eg: "weka.attributeSelection.CfsSubsetEval -L"
 (default weka.attributeSelection.CfsSubsetEval)
 -S <search method specification>
 Full class name of search method, followed
 by its options.
 eg: "weka.attributeSelection.BestFirst -D 1"
 (default weka.attributeSelection.BestFirst)
 -D
 If set, classifier is run in debug mode and
 may output additional info to the console
 -W
 Full name of base classifier.
 (default: weka.classifiers.trees.J48)
 
 Options specific to classifier weka.classifiers.trees.J48:
 
 -U
 Use unpruned tree.
 -C <pruning confidence>
 Set confidence threshold for pruning.
 (default 0.25)
 -M <minimum number of instances>
 Set minimum number of instances per leaf.
 (default 2)
 -R
 Use reduced error pruning.
 -N <number of folds>
 Set number of folds for reduced error
 pruning.
Bagging.javaClass Class for bagging a classifier to reduce variance.
ClassificationViaRegression.javaClass Class for doing classification using regression methods.
CostSensitiveClassifier.javaClass A metaclassifier that makes its base classifier cost-sensitive.
CVParameterSelection.javaClass Class for performing parameter selection by cross-validation for any classifier.

For more information, see:

R.
Dagging.javaClass This meta classifier creates a number of disjoint, stratified folds out of the data and feeds each chunk of data to a copy of the supplied base classifier.
Decorate.javaClass DECORATE is a meta-learner for building diverse ensembles of classifiers by using specially constructed artificial training examples.
END.javaClass A meta classifier for handling multi-class datasets with 2-class classifiers by building an ensemble of nested dichotomies.

For more info, check

Lin Dong, Eibe Frank, Stefan Kramer: Ensembles of Balanced Nested Dichotomies for Multi-class Problems.
EnsembleSelection.javaClass Combines several classifiers using the ensemble selection method.
FilteredClassifier.javaClass Class for running an arbitrary classifier on data that has been passed through an arbitrary filter.
Grading.javaClass Implements Grading.
GridSearch.javaClass Performs a grid search of parameter pairs for the a classifier (Y-axis, default is LinearRegression with the "Ridge" parameter) and the PLSFilter (X-axis, "# of Components") and chooses the best pair found for the actual predicting.

The initial grid is worked on with 2-fold CV to determine the values of the parameter pairs for the selected type of evaluation (e.g., accuracy).
LogitBoost.javaClass Class for performing additive logistic regression.
MetaCost.javaClass This metaclassifier makes its base classifier cost-sensitive using the method specified in

Pedro Domingos: MetaCost: A general method for making classifiers cost-sensitive.
MultiBoostAB.javaClass Class for boosting a classifier using the MultiBoosting method.

MultiBoosting is an extension to the highly successful AdaBoost technique for forming decision committees.
MultiClassClassifier.javaClass A metaclassifier for handling multi-class datasets with 2-class classifiers.
MultiScheme.javaClass Class for selecting a classifier from among several using cross validation on the training data or the performance on the training data.
OrdinalClassClassifier.javaClass Meta classifier that allows standard classification algorithms to be applied to ordinal class problems.

For more information see:

Eibe Frank, Mark Hall: A Simple Approach to Ordinal Classification.
RacedIncrementalLogitBoost.javaClass Classifier for incremental learning of large datasets by way of racing logit-boosted committees.
RandomCommittee.javaClass Class for building an ensemble of randomizable base classifiers.
RandomSubSpace.javaClass This method constructs a decision tree based classifier that maintains highest accuracy on training data and improves on generalization accuracy as it grows in complexity.
RegressionByDiscretization.javaClass A regression scheme that employs any classifier on a copy of the data that has the class attribute (equal-width) discretized.
Stacking.javaClass Combines several classifiers using the stacking method.
StackingC.javaClass Implements StackingC (more efficient version of stacking).

For more information, see

A.K.
ThresholdSelector.javaClass A metaclassifier that selecting a mid-point threshold on the probability output by a Classifier.
Vote.javaClass Class for combining classifiers.
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.