Source Code Cross Referenced for StackingC.java in  » Science » weka » weka » classifiers » meta » Java Source Code / Java DocumentationJava Source Code and Java Documentation

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » Science » weka » weka.classifiers.meta 
Source Cross Referenced  Class Diagram Java Document (Java Doc) 


001:        /*
002:         *    This program is free software; you can redistribute it and/or modify
003:         *    it under the terms of the GNU General Public License as published by
004:         *    the Free Software Foundation; either version 2 of the License, or
005:         *    (at your option) any later version.
006:         *
007:         *    This program is distributed in the hope that it will be useful,
008:         *    but WITHOUT ANY WARRANTY; without even the implied warranty of
009:         *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
010:         *    GNU General Public License for more details.
011:         *
012:         *    You should have received a copy of the GNU General Public License
013:         *    along with this program; if not, write to the Free Software
014:         *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
015:         */
016:
017:        /*
018:         *    StackingC.java
019:         *    Copyright (C) 1999 University of Waikato, Hamilton, New Zealand
020:         *    Copyright (C) 2002 Alexander K. Seewald
021:         *
022:         */
023:
024:        package weka.classifiers.meta;
025:
026:        import weka.classifiers.Classifier;
027:        import weka.classifiers.functions.LinearRegression;
028:        import weka.core.Instance;
029:        import weka.core.Instances;
030:        import weka.core.OptionHandler;
031:        import weka.core.TechnicalInformation;
032:        import weka.core.TechnicalInformationHandler;
033:        import weka.core.Utils;
034:        import weka.core.TechnicalInformation.Field;
035:        import weka.core.TechnicalInformation.Type;
036:        import weka.filters.Filter;
037:        import weka.filters.unsupervised.attribute.MakeIndicator;
038:        import weka.filters.unsupervised.attribute.Remove;
039:
040:        import java.util.Random;
041:
042:        /**
043:         <!-- globalinfo-start -->
044:         * Implements StackingC (more efficient version of stacking).<br/>
045:         * <br/>
046:         * For more information, see<br/>
047:         * <br/>
048:         * A.K. Seewald: How to Make Stacking Better and Faster While Also Taking Care of an Unknown Weakness. In: Nineteenth International Conference on Machine Learning, 554-561, 2002.<br/>
049:         * <br/>
050:         * Note: requires meta classifier to be a numeric prediction scheme.
051:         * <p/>
052:         <!-- globalinfo-end -->
053:         *
054:         <!-- technical-bibtex-start -->
055:         * BibTeX:
056:         * <pre>
057:         * &#64;inproceedings{Seewald2002,
058:         *    author = {A.K. Seewald},
059:         *    booktitle = {Nineteenth International Conference on Machine Learning},
060:         *    editor = {C. Sammut and A. Hoffmann},
061:         *    pages = {554-561},
062:         *    publisher = {Morgan Kaufmann Publishers},
063:         *    title = {How to Make Stacking Better and Faster While Also Taking Care of an Unknown Weakness},
064:         *    year = {2002}
065:         * }
066:         * </pre>
067:         * <p/>
068:         <!-- technical-bibtex-end -->
069:         *
070:         <!-- options-start -->
071:         * Valid options are: <p/>
072:         * 
073:         * <pre> -M &lt;scheme specification&gt;
074:         *  Full name of meta classifier, followed by options.
075:         *  Must be a numeric prediction scheme. Default: Linear Regression.</pre>
076:         * 
077:         * <pre> -X &lt;number of folds&gt;
078:         *  Sets the number of cross-validation folds.</pre>
079:         * 
080:         * <pre> -S &lt;num&gt;
081:         *  Random number seed.
082:         *  (default 1)</pre>
083:         * 
084:         * <pre> -B &lt;classifier specification&gt;
085:         *  Full class name of classifier to include, followed
086:         *  by scheme options. May be specified multiple times.
087:         *  (default: "weka.classifiers.rules.ZeroR")</pre>
088:         * 
089:         * <pre> -D
090:         *  If set, classifier is run in debug mode and
091:         *  may output additional info to the console</pre>
092:         * 
093:         <!-- options-end -->
094:         *
095:         * @author Eibe Frank (eibe@cs.waikato.ac.nz)
096:         * @author Alexander K. Seewald (alex@seewald.at)
097:         * @version $Revision: 1.13 $ 
098:         */
099:        public class StackingC extends Stacking implements  OptionHandler,
100:                TechnicalInformationHandler {
101:
102:            /** for serialization */
103:            static final long serialVersionUID = -6717545616603725198L;
104:
105:            /** The meta classifiers (one for each class, like in ClassificationViaRegression) */
106:            protected Classifier[] m_MetaClassifiers = null;
107:
108:            /** Filter to transform metaData - Remove */
109:            protected Remove m_attrFilter = null;
110:            /** Filter to transform metaData - MakeIndicator */
111:            protected MakeIndicator m_makeIndicatorFilter = null;
112:
113:            /**
114:             * The constructor.
115:             */
116:            public StackingC() {
117:                m_MetaClassifier = new weka.classifiers.functions.LinearRegression();
118:                ((LinearRegression) (getMetaClassifier()))
119:                        .setAttributeSelectionMethod(new weka.core.SelectedTag(
120:                                1, LinearRegression.TAGS_SELECTION));
121:            }
122:
123:            /**
124:             * Returns a string describing classifier
125:             * @return a description suitable for
126:             * displaying in the explorer/experimenter gui
127:             */
128:            public String globalInfo() {
129:
130:                return "Implements StackingC (more efficient version of stacking).\n\n"
131:                        + "For more information, see\n\n"
132:                        + getTechnicalInformation().toString()
133:                        + "\n\n"
134:                        + "Note: requires meta classifier to be a numeric prediction scheme.";
135:            }
136:
137:            /**
138:             * Returns an instance of a TechnicalInformation object, containing 
139:             * detailed information about the technical background of this class,
140:             * e.g., paper reference or book this class is based on.
141:             * 
142:             * @return the technical information about this class
143:             */
144:            public TechnicalInformation getTechnicalInformation() {
145:                TechnicalInformation result;
146:
147:                result = new TechnicalInformation(Type.INPROCEEDINGS);
148:                result.setValue(Field.AUTHOR, "A.K. Seewald");
149:                result
150:                        .setValue(
151:                                Field.TITLE,
152:                                "How to Make Stacking Better and Faster While Also Taking Care of an Unknown Weakness");
153:                result
154:                        .setValue(Field.BOOKTITLE,
155:                                "Nineteenth International Conference on Machine Learning");
156:                result.setValue(Field.EDITOR, "C. Sammut and A. Hoffmann");
157:                result.setValue(Field.YEAR, "2002");
158:                result.setValue(Field.PAGES, "554-561");
159:                result.setValue(Field.PUBLISHER, "Morgan Kaufmann Publishers");
160:
161:                return result;
162:            }
163:
164:            /**
165:             * String describing option for setting meta classifier
166:             * 
167:             * @return string describing the option
168:             */
169:            protected String metaOption() {
170:
171:                return "\tFull name of meta classifier, followed by options.\n"
172:                        + "\tMust be a numeric prediction scheme. Default: Linear Regression.";
173:            }
174:
175:            /**
176:             * Process options setting meta classifier.
177:             * 
178:             * @param options the meta options to parse
179:             * @throws Exception if parsing fails
180:             */
181:            protected void processMetaOptions(String[] options)
182:                    throws Exception {
183:
184:                String classifierString = Utils.getOption('M', options);
185:                String[] classifierSpec = Utils.splitOptions(classifierString);
186:                if (classifierSpec.length != 0) {
187:                    String classifierName = classifierSpec[0];
188:                    classifierSpec[0] = "";
189:                    setMetaClassifier(Classifier.forName(classifierName,
190:                            classifierSpec));
191:                } else {
192:                    ((LinearRegression) (getMetaClassifier()))
193:                            .setAttributeSelectionMethod(new weka.core.SelectedTag(
194:                                    1, LinearRegression.TAGS_SELECTION));
195:                }
196:            }
197:
198:            /**
199:             * Method that builds meta level.
200:             * 
201:             * @param newData the data to work with
202:             * @param random the random number generator to use for cross-validation
203:             * @throws Exception if generation fails
204:             */
205:            protected void generateMetaLevel(Instances newData, Random random)
206:                    throws Exception {
207:
208:                Instances metaData = metaFormat(newData);
209:                m_MetaFormat = new Instances(metaData, 0);
210:                for (int j = 0; j < m_NumFolds; j++) {
211:                    Instances train = newData.trainCV(m_NumFolds, j, random);
212:
213:                    // Build base classifiers
214:                    for (int i = 0; i < m_Classifiers.length; i++) {
215:                        getClassifier(i).buildClassifier(train);
216:                    }
217:
218:                    // Classify test instances and add to meta data
219:                    Instances test = newData.testCV(m_NumFolds, j);
220:                    for (int i = 0; i < test.numInstances(); i++) {
221:                        metaData.add(metaInstance(test.instance(i)));
222:                    }
223:                }
224:
225:                m_MetaClassifiers = Classifier.makeCopies(m_MetaClassifier,
226:                        m_BaseFormat.numClasses());
227:
228:                int[] arrIdc = new int[m_Classifiers.length + 1];
229:                arrIdc[m_Classifiers.length] = metaData.numAttributes() - 1;
230:                Instances newInsts;
231:                for (int i = 0; i < m_MetaClassifiers.length; i++) {
232:                    for (int j = 0; j < m_Classifiers.length; j++) {
233:                        arrIdc[j] = m_BaseFormat.numClasses() * j + i;
234:                    }
235:                    m_makeIndicatorFilter = new weka.filters.unsupervised.attribute.MakeIndicator();
236:                    m_makeIndicatorFilter.setAttributeIndex(""
237:                            + (metaData.classIndex() + 1));
238:                    m_makeIndicatorFilter.setNumeric(true);
239:                    m_makeIndicatorFilter.setValueIndex(i);
240:                    m_makeIndicatorFilter.setInputFormat(metaData);
241:                    newInsts = Filter
242:                            .useFilter(metaData, m_makeIndicatorFilter);
243:
244:                    m_attrFilter = new weka.filters.unsupervised.attribute.Remove();
245:                    m_attrFilter.setInvertSelection(true);
246:                    m_attrFilter.setAttributeIndicesArray(arrIdc);
247:                    m_attrFilter.setInputFormat(m_makeIndicatorFilter
248:                            .getOutputFormat());
249:                    newInsts = Filter.useFilter(newInsts, m_attrFilter);
250:
251:                    newInsts.setClassIndex(newInsts.numAttributes() - 1);
252:
253:                    m_MetaClassifiers[i].buildClassifier(newInsts);
254:                }
255:            }
256:
257:            /**
258:             * Classifies a given instance using the stacked classifier.
259:             *
260:             * @param instance the instance to be classified
261:             * @return the distribution
262:             * @throws Exception if instance could not be classified
263:             * successfully
264:             */
265:            public double[] distributionForInstance(Instance instance)
266:                    throws Exception {
267:
268:                int[] arrIdc = new int[m_Classifiers.length + 1];
269:                arrIdc[m_Classifiers.length] = m_MetaFormat.numAttributes() - 1;
270:                double[] classProbs = new double[m_BaseFormat.numClasses()];
271:                Instance newInst;
272:                double sum = 0;
273:
274:                for (int i = 0; i < m_MetaClassifiers.length; i++) {
275:                    for (int j = 0; j < m_Classifiers.length; j++) {
276:                        arrIdc[j] = m_BaseFormat.numClasses() * j + i;
277:                    }
278:                    m_makeIndicatorFilter.setAttributeIndex(""
279:                            + (m_MetaFormat.classIndex() + 1));
280:                    m_makeIndicatorFilter.setNumeric(true);
281:                    m_makeIndicatorFilter.setValueIndex(i);
282:                    m_makeIndicatorFilter.setInputFormat(m_MetaFormat);
283:                    m_makeIndicatorFilter.input(metaInstance(instance));
284:                    m_makeIndicatorFilter.batchFinished();
285:                    newInst = m_makeIndicatorFilter.output();
286:
287:                    m_attrFilter.setAttributeIndicesArray(arrIdc);
288:                    m_attrFilter.setInvertSelection(true);
289:                    m_attrFilter.setInputFormat(m_makeIndicatorFilter
290:                            .getOutputFormat());
291:                    m_attrFilter.input(newInst);
292:                    m_attrFilter.batchFinished();
293:                    newInst = m_attrFilter.output();
294:
295:                    classProbs[i] = m_MetaClassifiers[i]
296:                            .classifyInstance(newInst);
297:                    if (classProbs[i] > 1) {
298:                        classProbs[i] = 1;
299:                    }
300:                    if (classProbs[i] < 0) {
301:                        classProbs[i] = 0;
302:                    }
303:                    sum += classProbs[i];
304:                }
305:
306:                if (sum != 0)
307:                    Utils.normalize(classProbs, sum);
308:
309:                return classProbs;
310:            }
311:
312:            /**
313:             * Output a representation of this classifier
314:             * 
315:             * @return a string representation of the classifier
316:             */
317:            public String toString() {
318:
319:                if (m_MetaFormat == null) {
320:                    return "StackingC: No model built yet.";
321:                }
322:                String result = "StackingC\n\nBase classifiers\n\n";
323:                for (int i = 0; i < m_Classifiers.length; i++) {
324:                    result += getClassifier(i).toString() + "\n\n";
325:                }
326:
327:                result += "\n\nMeta classifiers (one for each class)\n\n";
328:                for (int i = 0; i < m_MetaClassifiers.length; i++) {
329:                    result += m_MetaClassifiers[i].toString() + "\n\n";
330:                }
331:
332:                return result;
333:            }
334:
335:            /**
336:             * Main method for testing this class.
337:             *
338:             * @param argv should contain the following arguments:
339:             * -t training file [-T test file] [-c class index]
340:             */
341:            public static void main(String[] argv) {
342:                runClassifier(new StackingC(), argv);
343:            }
344:        }
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.