NaccacheSternKeyPairGenerator.cs :  » PDF » iTextSharp » Org » BouncyCastle » Crypto » Generators » C# / CSharp Open Source

Home
C# / CSharp Open Source
1.2.6.4 mono .net core
2.2.6.4 mono core
3.Aspect Oriented Frameworks
4.Bloggers
5.Build Systems
6.Business Application
7.Charting Reporting Tools
8.Chat Servers
9.Code Coverage Tools
10.Content Management Systems CMS
11.CRM ERP
12.Database
13.Development
14.Email
15.Forum
16.Game
17.GIS
18.GUI
19.IDEs
20.Installers Generators
21.Inversion of Control Dependency Injection
22.Issue Tracking
23.Logging Tools
24.Message
25.Mobile
26.Network Clients
27.Network Servers
28.Office
29.PDF
30.Persistence Frameworks
31.Portals
32.Profilers
33.Project Management
34.RSS RDF
35.Rule Engines
36.Script
37.Search Engines
38.Sound Audio
39.Source Control
40.SQL Clients
41.Template Engines
42.Testing
43.UML
44.Web Frameworks
45.Web Service
46.Web Testing
47.Wiki Engines
48.Windows Presentation Foundation
49.Workflows
50.XML Parsers
C# / C Sharp
C# / C Sharp by API
C# / CSharp Tutorial
C# / CSharp Open Source » PDF » iTextSharp 
iTextSharp » Org » BouncyCastle » Crypto » Generators » NaccacheSternKeyPairGenerator.cs
using System;
using System.Collections;

using Org.BouncyCastle.Crypto;
using Org.BouncyCastle.Crypto.Parameters;
using Org.BouncyCastle.Math;
using Org.BouncyCastle.Security;
using Org.BouncyCastle.Utilities;

namespace Org.BouncyCastle.Crypto.Generators{
  /**
   * Key generation parameters for NaccacheStern cipher. For details on this cipher, please see
   *
   * http://www.gemplus.com/smart/rd/publications/pdf/NS98pkcs.pdf
   */
  public class NaccacheSternKeyPairGenerator
    : IAsymmetricCipherKeyPairGenerator
  {
    private static readonly int[] smallPrimes =
    {
      3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67,
      71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149,
      151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233,
      239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331,
      337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431,
      433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523,
      541, 547, 557
    };

    private NaccacheSternKeyGenerationParameters param;

    /*
     * (non-Javadoc)
     *
     * @see org.bouncycastle.crypto.AsymmetricCipherKeyPairGenerator#init(org.bouncycastle.crypto.KeyGenerationParameters)
     */
    public void Init(KeyGenerationParameters parameters)
    {
      this.param = (NaccacheSternKeyGenerationParameters)parameters;
    }

    /*
     * (non-Javadoc)
     *
     * @see org.bouncycastle.crypto.AsymmetricCipherKeyPairGenerator#generateKeyPair()
     */
    public AsymmetricCipherKeyPair GenerateKeyPair()
    {
      int strength = param.Strength;
      SecureRandom rand = param.Random;
      int certainty = param.Certainty;
      bool debug = param.IsDebug;

      if (debug)
      {
        Console.WriteLine("Fetching first " + param.CountSmallPrimes + " primes.");
      }

      ArrayList smallPrimes = findFirstPrimes(param.CountSmallPrimes);

      smallPrimes = permuteList(smallPrimes, rand);

      BigInteger u = BigInteger.One;
      BigInteger v = BigInteger.One;

      for (int i = 0; i < smallPrimes.Count / 2; i++)
      {
        u = u.Multiply((BigInteger)smallPrimes[i]);
      }
      for (int i = smallPrimes.Count / 2; i < smallPrimes.Count; i++)
      {
        v = v.Multiply((BigInteger)smallPrimes[i]);
      }

      BigInteger sigma = u.Multiply(v);

      // n = (2 a u _p + 1 ) ( 2 b v _q + 1)
      // -> |n| = strength
      // |2| = 1 in bits
      // -> |a| * |b| = |n| - |u| - |v| - |_p| - |_q| - |2| -|2|
      // remainingStrength = strength - sigma.bitLength() - _p.bitLength() -
      // _q.bitLength() - 1 -1
      int remainingStrength = strength - sigma.BitLength - 48;
      BigInteger a = generatePrime(remainingStrength / 2 + 1, certainty, rand);
      BigInteger b = generatePrime(remainingStrength / 2 + 1, certainty, rand);

      BigInteger _p;
      BigInteger _q;
      BigInteger p;
      BigInteger q;

      long tries = 0;
      if (debug)
      {
        Console.WriteLine("generating p and q");
      }

      BigInteger _2au = a.Multiply(u).ShiftLeft(1);
      BigInteger _2bv = b.Multiply(v).ShiftLeft(1);

      for (;;)
      {
        tries++;

        _p = generatePrime(24, certainty, rand);

        p = _p.Multiply(_2au).Add(BigInteger.One);

        if (!p.IsProbablePrime(certainty))
          continue;

        for (;;)
        {
          _q = generatePrime(24, certainty, rand);

          if (_p.Equals(_q))
            continue;

          q = _q.Multiply(_2bv).Add(BigInteger.One);

          if (q.IsProbablePrime(certainty))
            break;
        }

        if (!sigma.Gcd(_p.Multiply(_q)).Equals(BigInteger.One))
        {
          Console.WriteLine("sigma.gcd(_p.mult(_q)) != 1!\n _p: " + _p +"\n _q: "+ _q );
          continue;
        }

        if (p.Multiply(q).BitLength < strength)
        {
          if (debug)
          {
            Console.WriteLine("key size too small. Should be " + strength + " but is actually "
              + p.Multiply(q).BitLength);
          }
          continue;
        }
        break;
      }

      if (debug)
      {
        Console.WriteLine("needed " + tries + " tries to generate p and q.");
      }

      BigInteger n = p.Multiply(q);
      BigInteger phi_n = p.Subtract(BigInteger.One).Multiply(q.Subtract(BigInteger.One));
      BigInteger g;
      tries = 0;
      if (debug)
      {
        Console.WriteLine("generating g");
      }
      for (;;)
      {
        // TODO After the first loop, just regenerate one randomly-selected gPart each time?
        ArrayList gParts = new ArrayList();
        for (int ind = 0; ind != smallPrimes.Count; ind++)
        {
          BigInteger i = (BigInteger)smallPrimes[ind];
          BigInteger e = phi_n.Divide(i);

          for (;;)
          {
            tries++;

            g = generatePrime(strength, certainty, rand);

            if (!g.ModPow(e, n).Equals(BigInteger.One))
            {
              gParts.Add(g);
              break;
            }
          }
        }
        g = BigInteger.One;
        for (int i = 0; i < smallPrimes.Count; i++)
        {
          BigInteger gPart = (BigInteger) gParts[i];
          BigInteger smallPrime = (BigInteger) smallPrimes[i];
          g = g.Multiply(gPart.ModPow(sigma.Divide(smallPrime), n)).Mod(n);
        }

        // make sure that g is not divisible by p_i or q_i
        bool divisible = false;
        for (int i = 0; i < smallPrimes.Count; i++)
        {
          if (g.ModPow(phi_n.Divide((BigInteger)smallPrimes[i]), n).Equals(BigInteger.One))
          {
            if (debug)
            {
              Console.WriteLine("g has order phi(n)/" + smallPrimes[i] + "\n g: " + g);
            }
            divisible = true;
            break;
          }
        }

        if (divisible)
        {
          continue;
        }

        // make sure that g has order > phi_n/4

        //if (g.ModPow(phi_n.Divide(BigInteger.ValueOf(4)), n).Equals(BigInteger.One))
        if (g.ModPow(phi_n.ShiftRight(2), n).Equals(BigInteger.One))
        {
          if (debug)
          {
            Console.WriteLine("g has order phi(n)/4\n g:" + g);
          }
          continue;
        }

        if (g.ModPow(phi_n.Divide(_p), n).Equals(BigInteger.One))
        {
          if (debug)
          {
            Console.WriteLine("g has order phi(n)/p'\n g: " + g);
          }
          continue;
        }
        if (g.ModPow(phi_n.Divide(_q), n).Equals(BigInteger.One))
        {
          if (debug)
          {
            Console.WriteLine("g has order phi(n)/q'\n g: " + g);
          }
          continue;
        }
        if (g.ModPow(phi_n.Divide(a), n).Equals(BigInteger.One))
        {
          if (debug)
          {
            Console.WriteLine("g has order phi(n)/a\n g: " + g);
          }
          continue;
        }
        if (g.ModPow(phi_n.Divide(b), n).Equals(BigInteger.One))
        {
          if (debug)
          {
            Console.WriteLine("g has order phi(n)/b\n g: " + g);
          }
          continue;
        }
        break;
      }
      if (debug)
      {
        Console.WriteLine("needed " + tries + " tries to generate g");
        Console.WriteLine();
        Console.WriteLine("found new NaccacheStern cipher variables:");
        Console.WriteLine("smallPrimes: " + Arrays.ToString(smallPrimes.ToArray()));
        Console.WriteLine("sigma:...... " + sigma + " (" + sigma.BitLength + " bits)");
        Console.WriteLine("a:.......... " + a);
        Console.WriteLine("b:.......... " + b);
        Console.WriteLine("p':......... " + _p);
        Console.WriteLine("q':......... " + _q);
        Console.WriteLine("p:.......... " + p);
        Console.WriteLine("q:.......... " + q);
        Console.WriteLine("n:.......... " + n);
        Console.WriteLine("phi(n):..... " + phi_n);
        Console.WriteLine("g:.......... " + g);
        Console.WriteLine();
      }

      return new AsymmetricCipherKeyPair(new NaccacheSternKeyParameters(false, g, n, sigma.BitLength),
        new NaccacheSternPrivateKeyParameters(g, n, sigma.BitLength, smallPrimes, phi_n));
    }

    private static BigInteger generatePrime(
      int bitLength,
      int certainty,
      SecureRandom rand)
    {
      return new BigInteger(bitLength, certainty, rand);
    }

    /**
     * Generates a permuted ArrayList from the original one. The original List
     * is not modified
     *
     * @param arr
     *            the ArrayList to be permuted
     * @param rand
     *            the source of Randomness for permutation
     * @return a new ArrayList with the permuted elements.
     */
    private static ArrayList permuteList(
      ArrayList arr,
      SecureRandom rand)
    {
      ArrayList retval = new ArrayList(arr.Count);

      foreach (object element in arr)
      {
        int index = rand.Next(retval.Count + 1);
        retval.Insert(index, element);
      }

      return retval;
    }

    /**
     * Finds the first 'count' primes starting with 3
     *
     * @param count
     *            the number of primes to find
     * @return a vector containing the found primes as Integer
     */
    private static ArrayList findFirstPrimes(
      int count)
    {
      ArrayList primes = new ArrayList(count);

      for (int i = 0; i != count; i++)
      {
        primes.Add(BigInteger.ValueOf(smallPrimes[i]));
      }

      return primes;
    }

  }
}
www.java2v.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.