LightCompiler.cs :  » Script » IronRuby » Microsoft » Scripting » Interpreter » C# / CSharp Open Source

Home
C# / CSharp Open Source
1.2.6.4 mono .net core
2.2.6.4 mono core
3.Aspect Oriented Frameworks
4.Bloggers
5.Build Systems
6.Business Application
7.Charting Reporting Tools
8.Chat Servers
9.Code Coverage Tools
10.Content Management Systems CMS
11.CRM ERP
12.Database
13.Development
14.Email
15.Forum
16.Game
17.GIS
18.GUI
19.IDEs
20.Installers Generators
21.Inversion of Control Dependency Injection
22.Issue Tracking
23.Logging Tools
24.Message
25.Mobile
26.Network Clients
27.Network Servers
28.Office
29.PDF
30.Persistence Frameworks
31.Portals
32.Profilers
33.Project Management
34.RSS RDF
35.Rule Engines
36.Script
37.Search Engines
38.Sound Audio
39.Source Control
40.SQL Clients
41.Template Engines
42.Testing
43.UML
44.Web Frameworks
45.Web Service
46.Web Testing
47.Wiki Engines
48.Windows Presentation Foundation
49.Workflows
50.XML Parsers
C# / C Sharp
C# / C Sharp by API
C# / CSharp Tutorial
C# / CSharp Open Source » Script » IronRuby 
IronRuby » Microsoft » Scripting » Interpreter » LightCompiler.cs
/* ****************************************************************************
 *
 * Copyright (c) Microsoft Corporation. 
 *
 * This source code is subject to terms and conditions of the Microsoft Public License. A 
 * copy of the license can be found in the License.html file at the root of this distribution. If 
 * you cannot locate the  Microsoft Public License, please send an email to 
 * dlr@microsoft.com. By using this source code in any fashion, you are agreeing to be bound 
 * by the terms of the Microsoft Public License.
 *
 * You must not remove this notice, or any other, from this software.
 *
 *
 * ***************************************************************************/

#if !CLR2
using System.Linq.Expressions;
#else
using Microsoft.Scripting.Ast;
#endif

using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Reflection;
using Microsoft.Scripting.Utils;
using AstUtilsMicrosoft.Scripting.Ast.Utils;
using Microsoft.Scripting.Runtime;
using System.Runtime.CompilerServices;

namespace Microsoft.Scripting.Interpreter{
    public sealed class ExceptionHandler {
        public readonly Type ExceptionType;
        public readonly int StartIndex;
        public readonly int EndIndex;
        public readonly int LabelIndex;
        public readonly int HandlerStartIndex;

        public bool IsFault { get { return ExceptionType == null; } }

        internal ExceptionHandler(int start, int end, int labelIndex, int handlerStartIndex, Type exceptionType) {
            StartIndex = start;
            EndIndex = end;
            LabelIndex = labelIndex;
            ExceptionType = exceptionType;
            HandlerStartIndex = handlerStartIndex;
        }

        public bool Matches(Type exceptionType, int index) {
            if (index >= StartIndex && index < EndIndex) {
                if (ExceptionType == null || ExceptionType.IsAssignableFrom(exceptionType)) {
                    return true;
                }
            }
            return false;
        }

        public bool IsBetterThan(ExceptionHandler other) {
            if (other == null) return true;

            if (StartIndex == other.StartIndex && EndIndex == other.EndIndex) {
                return HandlerStartIndex < other.HandlerStartIndex;
            }

            if (StartIndex > other.StartIndex) {
                Debug.Assert(EndIndex <= other.EndIndex);
                return true;
            } else if (EndIndex < other.EndIndex) {
                Debug.Assert(StartIndex == other.StartIndex);
                return true;
            } else {
                return false;
            }
        }

        internal bool IsInside(int index) {
            return index >= StartIndex && index < EndIndex;
        }

        public override string ToString() {
            return String.Format("{0} [{1}-{2}] [{3}->]",
                (IsFault ? "fault" : "catch(" + ExceptionType.Name + ")"),
                StartIndex, EndIndex,
                HandlerStartIndex
            );
        }
    }

    [Serializable]
    public class DebugInfo {
        // TODO: readonly

        public int StartLine, EndLine;
        public int Index;
        public string FileName;
        public bool IsClear;
        private static readonly DebugInfoComparer _debugComparer = new DebugInfoComparer();

        private class DebugInfoComparer : IComparer<DebugInfo> {
            //We allow comparison between int and DebugInfo here
            int IComparer<DebugInfo>.Compare(DebugInfo d1, DebugInfo d2) {
                if (d1.Index > d2.Index) return 1;
                else if (d1.Index == d2.Index) return 0;
                else return -1;
            }
        }
        
        public static DebugInfo GetMatchingDebugInfo(DebugInfo[] debugInfos, int index) {
            //Create a faked DebugInfo to do the search
            DebugInfo d = new DebugInfo { Index = index };

            //to find the closest debug info before the current index

            int i = Array.BinarySearch<DebugInfo>(debugInfos, d, _debugComparer);
            if (i < 0) {
                //~i is the index for the first bigger element
                //if there is no bigger element, ~i is the length of the array
                i = ~i;
                if (i == 0) {
                    return null;
                }
                //return the last one that is smaller
                i = i - 1;
            }

            return debugInfos[i];
        }

        public override string ToString() {
            if (IsClear) {
                return String.Format("{0}: clear", Index);
            } else {
                return String.Format("{0}: [{1}-{2}] '{3}'", Index, StartLine, EndLine, FileName);
            }
        }
    }

    // TODO:
    [System.Diagnostics.CodeAnalysis.SuppressMessage("Microsoft.Performance", "CA1815:OverrideEqualsAndOperatorEqualsOnValueTypes")]
    [Serializable]
    public struct InterpretedFrameInfo {
        public readonly string MethodName;
        
        // TODO:
        [System.Diagnostics.CodeAnalysis.SuppressMessage("Microsoft.Security", "CA2104:DoNotDeclareReadOnlyMutableReferenceTypes")]
        public readonly DebugInfo DebugInfo;

        public InterpretedFrameInfo(string methodName, DebugInfo info) {
            MethodName = methodName;
            DebugInfo = info;
        }

        public override string ToString() {
            return MethodName + (DebugInfo != null ? ": " + DebugInfo.ToString() : null);
        }
    }

    [System.Diagnostics.CodeAnalysis.SuppressMessage("Microsoft.Maintainability", "CA1506:AvoidExcessiveClassCoupling")]
    public sealed class LightCompiler {        
        private static readonly MethodInfo _RunMethod = typeof(Interpreter).GetMethod("Run");
        private static readonly MethodInfo _GetCurrentMethod = typeof(MethodBase).GetMethod("GetCurrentMethod");

#if DEBUG
        static LightCompiler() {
            Debug.Assert(_GetCurrentMethod != null && _RunMethod != null);
        }
#endif
        // zero: sync compilation
        private readonly int _compilationThreshold;

        private readonly InstructionList _instructions;
        private readonly LocalVariables _locals = new LocalVariables();

        private readonly List<ExceptionHandler> _handlers = new List<ExceptionHandler>();
        
        private readonly List<DebugInfo> _debugInfos = new List<DebugInfo>();
        private readonly List<UpdateStackTraceInstruction> _stackTraceUpdates = new List<UpdateStackTraceInstruction>();

        private readonly Dictionary<LabelTarget, LabelInfo> _treeLabels = new Dictionary<LabelTarget, LabelInfo>();
        private LabelScopeInfo _labelBlock = new LabelScopeInfo(null, LabelScopeKind.Lambda);

        private readonly Stack<ParameterExpression> _exceptionForRethrowStack = new Stack<ParameterExpression>();

        // Set to true to force compiliation of this lambda.
        // This disables the interpreter for this lambda. We still need to
        // walk it, however, to resolve variables closed over from the parent
        // lambdas (because they may be interpreted).
        private bool _forceCompile;

        private readonly LightCompiler _parent;

        internal LightCompiler(int compilationThreshold) {
            _instructions = new InstructionList();
            _compilationThreshold = compilationThreshold < 0 ? 32 : compilationThreshold;
        }

        private LightCompiler(LightCompiler parent)
            : this(parent._compilationThreshold) {
            _parent = parent;
        }

        public InstructionList Instructions {
            get { return _instructions; }
        }

        public LocalVariables Locals {
            get { return _locals; }
        }

        internal static Expression Unbox(Expression strongBoxExpression) {
            return Expression.Field(strongBoxExpression, typeof(StrongBox<object>).GetField("Value"));
        }

        internal LightDelegateCreator CompileTop(LambdaExpression node) {
            foreach (var p in node.Parameters) {
                var local = _locals.DefineLocal(p, 0);
                _instructions.EmitInitializeParameter(local.Index);
            }

            Compile(node.Body);
            
            // pop the result of the last expression:
            if (node.Body.Type != typeof(void) && node.ReturnType == typeof(void)) {
                _instructions.EmitPop();
            }

            Debug.Assert(_instructions.CurrentStackDepth == (node.ReturnType != typeof(void) ? 1 : 0));

            return new LightDelegateCreator(MakeInterpreter(node), node);
        }

        private Interpreter MakeInterpreter(LambdaExpression lambda) {
            if (_forceCompile) {
                return null;
            }

            var handlers = _handlers.ToArray();
            var debugInfos = _debugInfos.ToArray();
            foreach (var stackTraceUpdate in _stackTraceUpdates) {
                stackTraceUpdate._debugInfos = debugInfos;
            }
         
            return new Interpreter(lambda, _locals, GetBranchMapping(), _instructions.ToArray(), handlers, debugInfos, _compilationThreshold);
        }

        private void CompileConstantExpression(Expression expr) {
            var node = (ConstantExpression)expr;
            _instructions.EmitLoad(node.Value, node.Type);
        }

        private void CompileDefaultExpression(Expression expr) {
            CompileDefaultExpression(expr.Type);
        }

        private void CompileDefaultExpression(Type type) {
            if (type != typeof(void)) {
                if (type.IsValueType) {
                    object value = ScriptingRuntimeHelpers.GetPrimitiveDefaultValue(type);
                    if (value != null) {
                        _instructions.EmitLoad(value);
                    } else {
                        _instructions.EmitDefaultValue(type);
                    }
                } else {
                    _instructions.EmitLoad(null);
                }
            }
        }

        private LocalVariable EnsureAvailableForClosure(ParameterExpression expr) {
            LocalVariable local;
            if (_locals.TryGetLocalOrClosure(expr, out local)) {
                if (!local.InClosure && !local.IsBoxed) {
                    _locals.Box(expr, _instructions);
                }
                return local;
            } else if (_parent != null) {
                _parent.EnsureAvailableForClosure(expr);
                return _locals.AddClosureVariable(expr);
            } else {
                throw new InvalidOperationException("unbound variable: " + expr);
            }
        }

        private void EnsureVariable(ParameterExpression variable) {
            if (!_locals.ContainsVariable(variable)) {
                EnsureAvailableForClosure(variable);
            }
        }

        private LocalVariable ResolveLocal(ParameterExpression variable) {
            LocalVariable local;
            if (!_locals.TryGetLocalOrClosure(variable, out local)) {
                local = EnsureAvailableForClosure(variable);
            }
            return local;
        }

        public void CompileGetVariable(ParameterExpression variable) {
            LocalVariable local = ResolveLocal(variable);

            if (local.InClosure) {
                _instructions.EmitLoadLocalFromClosure(local.Index);
            } else if (local.IsBoxed) {
                _instructions.EmitLoadLocalBoxed(local.Index);
            } else {
                _instructions.EmitLoadLocal(local.Index);
            }

            _instructions.SetDebugCookie(variable.Name);
        }

        public void CompileGetBoxedVariable(ParameterExpression variable) {
            LocalVariable local = ResolveLocal(variable);

            if (local.InClosure) {
                _instructions.EmitLoadLocalFromClosureBoxed(local.Index);
            } else {
                Debug.Assert(local.IsBoxed);
                _instructions.EmitLoadLocal(local.Index);
            }

            _instructions.SetDebugCookie(variable.Name);
        }

        public void CompileSetVariable(ParameterExpression variable, bool isVoid) {
            LocalVariable local = ResolveLocal(variable);

            if (local.InClosure) {
                if (isVoid) {
                    _instructions.EmitStoreLocalToClosure(local.Index);
                } else {
                    _instructions.EmitAssignLocalToClosure(local.Index);
                }
            } else if (local.IsBoxed) {
                if (isVoid) {
                    _instructions.EmitStoreLocalBoxed(local.Index);
                } else {
                    _instructions.EmitAssignLocalBoxed(local.Index);
                }
            } else {
                if (isVoid) {
                    _instructions.EmitStoreLocal(local.Index);
                } else {
                    _instructions.EmitAssignLocal(local.Index);
                }
            }

            _instructions.SetDebugCookie(variable.Name);
        }

        private void CompileParameterExpression(Expression expr) {
            var node = (ParameterExpression)expr;
            CompileGetVariable(node);
        }

        private void CompileBlockExpression(Expression expr, bool asVoid) {
            var node = (BlockExpression)expr;
            var end = CompileBlockStart(node);

            var lastExpression = node.Expressions[node.Expressions.Count - 1];
            if (asVoid) {
                CompileAsVoid(lastExpression);
            } else {
                Compile(lastExpression, asVoid);
            }
            CompileBlockEnd(end);
        }

        private LocalDefinition[] CompileBlockStart(BlockExpression node) {
            var start = _instructions.Count;

            // TODO: pop these off a stack when exiting
            // TODO: basic flow analysis so we don't have to initialize all
            // variables.
            LocalDefinition[] locals = new LocalDefinition[node.Variables.Count];
            int localCnt = 0;
            foreach (var variable in node.Variables) {
                var local = _locals.DefineLocal(variable, start);
                locals[localCnt++] = local;

                _instructions.EmitInitializeLocal(local.Index, variable.Type);
                _instructions.SetDebugCookie(variable.Name);
            }

            for (int i = 0; i < node.Expressions.Count - 1; i++) {
                CompileAsVoid(node.Expressions[i]);
            }
            return locals;
        }

        private void CompileBlockEnd(LocalDefinition[] locals) {
            foreach (var local in locals) {
                _locals.UndefineLocal(local, _instructions.Count);
            }
        }

        private void CompileIndexExpression(Expression expr) {
            var index = (IndexExpression)expr;

            // instance:
            if (index.Object != null) {
                Compile(index.Object);
            }

            // indexes, byref args not allowed.
            foreach (var arg in index.Arguments) {
                Compile(arg);
            }

            if (index.Indexer != null) {
                _instructions.EmitCall(index.Indexer.GetGetMethod(true));
            } else if (index.Arguments.Count != 1) {
                _instructions.EmitCall(index.Object.Type.GetMethod("Get", BindingFlags.Public | BindingFlags.Instance));
            } else {
                _instructions.EmitGetArrayItem(index.Object.Type);
            }
        }

        private void CompileIndexAssignment(BinaryExpression node, bool asVoid) {
            var index = (IndexExpression)node.Left;

            if (!asVoid) {
                throw new NotImplementedException();
            }

            // instance:
            if (index.Object != null) {
                Compile(index.Object);
            }

            // indexes, byref args not allowed.
            foreach (var arg in index.Arguments) {
                Compile(arg);
            }

            // value:
            Compile(node.Right);

            if (index.Indexer != null) {
                _instructions.EmitCall(index.Indexer.GetSetMethod(true));
            } else if (index.Arguments.Count != 1) {
                _instructions.EmitCall(index.Object.Type.GetMethod("Set", BindingFlags.Public | BindingFlags.Instance));
            } else {
                _instructions.EmitSetArrayItem(index.Object.Type);
            }
        }

        private void CompileMemberAssignment(BinaryExpression node, bool asVoid) {
            var member = (MemberExpression)node.Left;

            PropertyInfo pi = member.Member as PropertyInfo;
            if (pi != null) {
                var method = pi.GetSetMethod(true);
                Compile(member.Expression);
                Compile(node.Right);

                int start = _instructions.Count;
                if (!asVoid) {
                    LocalDefinition local = _locals.DefineLocal(Expression.Parameter(node.Right.Type), start);
                    _instructions.EmitAssignLocal(local.Index);
                    _instructions.EmitCall(method);
                    _instructions.EmitLoadLocal(local.Index);
                    _locals.UndefineLocal(local, _instructions.Count);
                } else {
                    _instructions.EmitCall(method);
                }
                return;
            }

            FieldInfo fi = member.Member as FieldInfo;
            if (fi != null) {
                if (member.Expression != null) {
                    Compile(member.Expression);
                }
                Compile(node.Right);

                int start = _instructions.Count;
                if (!asVoid) {
                    LocalDefinition local = _locals.DefineLocal(Expression.Parameter(node.Right.Type), start);
                    _instructions.EmitAssignLocal(local.Index);
                    _instructions.EmitStoreField(fi);
                    _instructions.EmitLoadLocal(local.Index);
                    _locals.UndefineLocal(local, _instructions.Count);
                } else {
                    _instructions.EmitStoreField(fi);
                }
                return;
            }

            throw new NotImplementedException();
        }

        private void CompileVariableAssignment(BinaryExpression node, bool asVoid) {
            this.Compile(node.Right);

            var target = (ParameterExpression)node.Left;
            CompileSetVariable(target, asVoid);
        }

        private void CompileAssignBinaryExpression(Expression expr, bool asVoid) {
            var node = (BinaryExpression)expr;

            switch (node.Left.NodeType) {
                case ExpressionType.Index:
                    CompileIndexAssignment(node, asVoid); 
                    break;

                case ExpressionType.MemberAccess:
                    CompileMemberAssignment(node, asVoid); 
                    break;

                case ExpressionType.Parameter:
                case ExpressionType.Extension:
                    CompileVariableAssignment(node, asVoid); 
                    break;

                default:
                    throw new InvalidOperationException("Invalid lvalue for assignment: " + node.Left.NodeType);
            }
        }

        private void CompileBinaryExpression(Expression expr) {
            var node = (BinaryExpression)expr;

            if (node.Method != null) {
                Compile(node.Left);
                Compile(node.Right);
                _instructions.EmitCall(node.Method);
            } else {
                switch (node.NodeType) {
                    case ExpressionType.ArrayIndex:
                        Debug.Assert(node.Right.Type == typeof(int));
                        Compile(node.Left);
                        Compile(node.Right);
                        _instructions.EmitGetArrayItem(node.Left.Type);
                        return;

                    case ExpressionType.Add:
                    case ExpressionType.AddChecked:
                    case ExpressionType.Subtract:
                    case ExpressionType.SubtractChecked:
                    case ExpressionType.Multiply:
                    case ExpressionType.MultiplyChecked:
                    case ExpressionType.Divide:
                        CompileArithmetic(node.NodeType, node.Left, node.Right);
                        return;

                    case ExpressionType.Equal:
                        CompileEqual(node.Left, node.Right);
                        return;

                    case ExpressionType.NotEqual:
                        CompileNotEqual(node.Left, node.Right);
                        return;

                    case ExpressionType.LessThan:
                    case ExpressionType.LessThanOrEqual:
                    case ExpressionType.GreaterThan:
                    case ExpressionType.GreaterThanOrEqual:
                        CompileComparison(node.NodeType, node.Left, node.Right);
                        return;

                    default:
                        throw new NotImplementedException(node.NodeType.ToString());
                }
            }
        }

        private void CompileEqual(Expression left, Expression right) {
            Debug.Assert(left.Type == right.Type || !left.Type.IsValueType && !right.Type.IsValueType);
            Compile(left);
            Compile(right);
            _instructions.EmitEqual(left.Type);
        }

        private void CompileNotEqual(Expression left, Expression right) {
            Debug.Assert(left.Type == right.Type || !left.Type.IsValueType && !right.Type.IsValueType);
            Compile(left);
            Compile(right);
            _instructions.EmitNotEqual(left.Type);
        }

        private void CompileComparison(ExpressionType nodeType, Expression left, Expression right) {
            Debug.Assert(left.Type == right.Type && TypeUtils.IsNumeric(left.Type));

            // TODO:
            // if (TypeUtils.IsNullableType(left.Type) && liftToNull) ...

            Compile(left);
            Compile(right);
            
            switch (nodeType) {
                case ExpressionType.LessThan: _instructions.EmitLessThan(left.Type); break;
                case ExpressionType.LessThanOrEqual: _instructions.EmitLessThanOrEqual(left.Type); break;
                case ExpressionType.GreaterThan: _instructions.EmitGreaterThan(left.Type); break;
                case ExpressionType.GreaterThanOrEqual: _instructions.EmitGreaterThanOrEqual(left.Type); break;
                default: throw Assert.Unreachable;
            }
        }

        private void CompileArithmetic(ExpressionType nodeType, Expression left, Expression right) {
            Debug.Assert(left.Type == right.Type && TypeUtils.IsArithmetic(left.Type));
            Compile(left);
            Compile(right);
            switch (nodeType) {
                case ExpressionType.Add: _instructions.EmitAdd(left.Type, false); break;
                case ExpressionType.AddChecked: _instructions.EmitAdd(left.Type, true); break;
                case ExpressionType.Subtract: _instructions.EmitSub(left.Type, false); break;
                case ExpressionType.SubtractChecked: _instructions.EmitSub(left.Type, true); break;
                case ExpressionType.Multiply: _instructions.EmitMul(left.Type, false); break;
                case ExpressionType.MultiplyChecked: _instructions.EmitMul(left.Type, true); break;
                case ExpressionType.Divide: _instructions.EmitDiv(left.Type); break;
                default: throw Assert.Unreachable;
            }
        }

        private void CompileConvertUnaryExpression(Expression expr) {
            var node = (UnaryExpression)expr;
            if (node.Method != null) {
                Compile(node.Operand);

                // We should be able to ignore Int32ToObject
                if (node.Method != Runtime.ScriptingRuntimeHelpers.Int32ToObjectMethod) {
                    _instructions.EmitCall(node.Method);
                }
            } else if (node.Type == typeof(void)) {
                CompileAsVoid(node.Operand);
            } else {
                Compile(node.Operand);
                CompileConvertToType(node.Operand.Type, node.Type, node.NodeType == ExpressionType.ConvertChecked);
            }
        }

        private void CompileConvertToType(Type typeFrom, Type typeTo, bool isChecked) {
            Debug.Assert(typeFrom != typeof(void) && typeTo != typeof(void));

            if (TypeUtils.AreEquivalent(typeTo, typeFrom)) {
                return;
            }

            TypeCode from = Type.GetTypeCode(typeFrom);
            TypeCode to = Type.GetTypeCode(typeTo);
            if (TypeUtils.IsNumeric(from) && TypeUtils.IsNumeric(to)) {
                if (isChecked) {
                    _instructions.EmitNumericConvertChecked(from, to);
                } else {
                    _instructions.EmitNumericConvertUnchecked(from, to);
                }
                return;
            }

            // TODO: Conversions to a super-class or implemented interfaces are no-op. 
            // A conversion to a non-implemented interface or an unrelated class, etc. should fail.
            return;
        }

        private void CompileNotExpression(UnaryExpression node) {
            if (node.Operand.Type == typeof(bool)) {
                Compile(node.Operand);
                _instructions.EmitNot();
            } else {
                throw new NotImplementedException();
            }
        }

        private void CompileUnaryExpression(Expression expr) {
            var node = (UnaryExpression)expr;
            
            if (node.Method != null) {
                Compile(node.Operand);
                _instructions.EmitCall(node.Method);
            } else {
                switch (node.NodeType) {
                    case ExpressionType.Not:
                        CompileNotExpression(node);
                        return;
                    case ExpressionType.TypeAs:
                        CompileTypeAsExpression(node);
                        return;
                    default:
                        throw new NotImplementedException(node.NodeType.ToString());
                }
            }
        }

        private void CompileAndAlsoBinaryExpression(Expression expr) {
            CompileLogicalBinaryExpression(expr, true);
        }

        private void CompileOrElseBinaryExpression(Expression expr) {
            CompileLogicalBinaryExpression(expr, false);
        }

        private void CompileLogicalBinaryExpression(Expression expr, bool andAlso) {
            var node = (BinaryExpression)expr;
            if (node.Method != null) {
                throw new NotImplementedException();
            }

            Debug.Assert(node.Left.Type == node.Right.Type);

            if (node.Left.Type == typeof(bool)) {
                var elseLabel = _instructions.MakeLabel();
                var endLabel = _instructions.MakeLabel();
                Compile(node.Left);
                if (andAlso) {
                    _instructions.EmitBranchFalse(elseLabel);
                } else {
                    _instructions.EmitBranchTrue(elseLabel);
                }
                Compile(node.Right);
                _instructions.EmitBranch(endLabel, false, true);
                _instructions.MarkLabel(elseLabel);
                _instructions.EmitLoad(!andAlso);
                _instructions.MarkLabel(endLabel);
                return;
            }

            Debug.Assert(node.Left.Type == typeof(bool?));
            throw new NotImplementedException();
        }

        private void CompileConditionalExpression(Expression expr, bool asVoid) {
            var node = (ConditionalExpression)expr;
            Compile(node.Test);

            if (node.IfTrue == AstUtils.Empty()) {
                var endOfFalse = _instructions.MakeLabel();
                _instructions.EmitBranchTrue(endOfFalse);
                Compile(node.IfFalse, asVoid);
                _instructions.MarkLabel(endOfFalse);
            } else {
                var endOfTrue = _instructions.MakeLabel();
                _instructions.EmitBranchFalse(endOfTrue);
                Compile(node.IfTrue, asVoid);

                if (node.IfFalse != AstUtils.Empty()) {
                    var endOfFalse = _instructions.MakeLabel();
                    _instructions.EmitBranch(endOfFalse, false, !asVoid);
                    _instructions.MarkLabel(endOfTrue);
                    Compile(node.IfFalse, asVoid);
                    _instructions.MarkLabel(endOfFalse);
                } else {
                    _instructions.MarkLabel(endOfTrue);
                }
            }
        }

        #region Loops

        private void CompileLoopExpression(Expression expr) {
            var node = (LoopExpression)expr;
            var enterLoop = new EnterLoopInstruction(node, _locals, _compilationThreshold, _instructions.Count);

            PushLabelBlock(LabelScopeKind.Statement);
            LabelInfo breakLabel = DefineLabel(node.BreakLabel);
            LabelInfo continueLabel = DefineLabel(node.ContinueLabel);

            _instructions.MarkLabel(continueLabel.GetLabel(this));

            // emit loop body:
            _instructions.Emit(enterLoop);
            CompileAsVoid(node.Body);

            // emit loop branch:
            _instructions.EmitBranch(continueLabel.GetLabel(this), expr.Type != typeof(void), false);

            _instructions.MarkLabel(breakLabel.GetLabel(this));

            PopLabelBlock(LabelScopeKind.Statement);

            enterLoop.FinishLoop(_instructions.Count);
        }

        #endregion

        private void CompileSwitchExpression(Expression expr) {
            var node = (SwitchExpression)expr;

            // Currently only supports int test values, with no method
            if (node.SwitchValue.Type != typeof(int) || node.Comparison != null) {
                throw new NotImplementedException();
            }

            // Test values must be constant
            if (!node.Cases.All(c => c.TestValues.All(t => t is ConstantExpression))) {
                throw new NotImplementedException();
            }
            LabelInfo end = DefineLabel(null);
            bool hasValue = node.Type != typeof(void);

            Compile(node.SwitchValue);
            var caseDict = new Dictionary<int, int>();
            int switchIndex = _instructions.Count;
            _instructions.EmitSwitch(caseDict);

            if (node.DefaultBody != null) {
                Compile(node.DefaultBody);
            } else {
                Debug.Assert(!hasValue);
            }
            _instructions.EmitBranch(end.GetLabel(this), false, hasValue);

            for (int i = 0; i < node.Cases.Count; i++) {
                var switchCase = node.Cases[i];

                int caseOffset = _instructions.Count - switchIndex;
                foreach (ConstantExpression testValue in switchCase.TestValues) {
                    caseDict[(int)testValue.Value] = caseOffset;
                }

                Compile(switchCase.Body);

                if (i < node.Cases.Count - 1) {
                    _instructions.EmitBranch(end.GetLabel(this), false, hasValue);
                }
            }

            _instructions.MarkLabel(end.GetLabel(this));
        }

        private void CompileLabelExpression(Expression expr) {
            var node = (LabelExpression)expr;

            // If we're an immediate child of a block, our label will already
            // be defined. If not, we need to define our own block so this
            // label isn't exposed except to its own child expression.
            LabelInfo label = null;

            if (_labelBlock.Kind == LabelScopeKind.Block) {
                _labelBlock.TryGetLabelInfo(node.Target, out label);

                // We're in a block but didn't find our label, try switch
                if (label == null && _labelBlock.Parent.Kind == LabelScopeKind.Switch) {
                    _labelBlock.Parent.TryGetLabelInfo(node.Target, out label);
                }

                // if we're in a switch or block, we should've found the label
                Debug.Assert(label != null);
            }

            if (label == null) {
                label = DefineLabel(node.Target);
            }

            if (node.DefaultValue != null) {
                if (node.Target.Type == typeof(void)) {
                    CompileAsVoid(node.DefaultValue);
                } else {
                    Compile(node.DefaultValue);
                }
            }

            _instructions.MarkLabel(label.GetLabel(this));
        }

        private void CompileGotoExpression(Expression expr) {
            var node = (GotoExpression)expr;
            var labelInfo = ReferenceLabel(node.Target);

            if (node.Value != null) {
                Compile(node.Value);
            }

            _instructions.EmitGoto(labelInfo.GetLabel(this), node.Type != typeof(void), node.Value != null && node.Value.Type != typeof(void));
        }

        private void PushLabelBlock(LabelScopeKind type) {
            _labelBlock = new LabelScopeInfo(_labelBlock, type);
        }

        [System.Diagnostics.CodeAnalysis.SuppressMessage("Microsoft.Usage", "CA1801:ReviewUnusedParameters", MessageId = "kind")]
        private void PopLabelBlock(LabelScopeKind kind) {
            Debug.Assert(_labelBlock != null && _labelBlock.Kind == kind);
            _labelBlock = _labelBlock.Parent;
        }

        private LabelInfo EnsureLabel(LabelTarget node) {
            LabelInfo result;
            if (!_treeLabels.TryGetValue(node, out result)) {
                _treeLabels.Add(node, result = new LabelInfo(node));
            }
            return result;
        }

        private LabelInfo ReferenceLabel(LabelTarget node) {
            LabelInfo result = EnsureLabel(node);
            result.Reference(_labelBlock);
            return result;
        }

        private LabelInfo DefineLabel(LabelTarget node) {
            if (node == null) {
                return new LabelInfo(null);
            }
            LabelInfo result = EnsureLabel(node);
            result.Define(_labelBlock);
            return result;
        }

        private bool TryPushLabelBlock(Expression node) {
            // Anything that is "statement-like" -- e.g. has no associated
            // stack state can be jumped into, with the exception of try-blocks
            // We indicate this by a "Block"
            // 
            // Otherwise, we push an "Expression" to indicate that it can't be
            // jumped into
            switch (node.NodeType) {
                default:
                    if (_labelBlock.Kind != LabelScopeKind.Expression) {
                        PushLabelBlock(LabelScopeKind.Expression);
                        return true;
                    }
                    return false;
                case ExpressionType.Label:
                    // LabelExpression is a bit special, if it's directly in a
                    // block it becomes associate with the block's scope. Same
                    // thing if it's in a switch case body.
                    if (_labelBlock.Kind == LabelScopeKind.Block) {
                        var label = ((LabelExpression)node).Target;
                        if (_labelBlock.ContainsTarget(label)) {
                            return false;
                        }
                        if (_labelBlock.Parent.Kind == LabelScopeKind.Switch &&
                            _labelBlock.Parent.ContainsTarget(label)) {
                            return false;
                        }
                    }
                    PushLabelBlock(LabelScopeKind.Statement);
                    return true;
                case ExpressionType.Block:
                    PushLabelBlock(LabelScopeKind.Block);
                    // Labels defined immediately in the block are valid for
                    // the whole block.
                    if (_labelBlock.Parent.Kind != LabelScopeKind.Switch) {
                        DefineBlockLabels(node);
                    }
                    return true;
                case ExpressionType.Switch:
                    PushLabelBlock(LabelScopeKind.Switch);
                    // Define labels inside of the switch cases so theyare in
                    // scope for the whole switch. This allows "goto case" and
                    // "goto default" to be considered as local jumps.
                    var @switch = (SwitchExpression)node;
                    foreach (SwitchCase c in @switch.Cases) {
                        DefineBlockLabels(c.Body);
                    }
                    DefineBlockLabels(@switch.DefaultBody);
                    return true;

                // Remove this when Convert(Void) goes away.
                case ExpressionType.Convert:
                    if (node.Type != typeof(void)) {
                        // treat it as an expression
                        goto default;
                    }
                    PushLabelBlock(LabelScopeKind.Statement);
                    return true;

                case ExpressionType.Conditional:
                case ExpressionType.Loop:
                case ExpressionType.Goto:
                    PushLabelBlock(LabelScopeKind.Statement);
                    return true;
            }
        }

        private void DefineBlockLabels(Expression node) {
            var block = node as BlockExpression;
            if (block == null) {
                return;
            }
            for (int i = 0, n = block.Expressions.Count; i < n; i++) {
                Expression e = block.Expressions[i];

                var label = e as LabelExpression;
                if (label != null) {
                    DefineLabel(label.Target);
                }
            }
        }

        private Dictionary<LabelTarget, BranchLabel> GetBranchMapping() {
            var newLabelMapping = new Dictionary<LabelTarget, BranchLabel>(_treeLabels.Count);
            foreach (var kvp in _treeLabels) {
                newLabelMapping[kvp.Key] = kvp.Value.GetLabel(this);
            }
            return newLabelMapping;
        }

        private void CompileThrowUnaryExpression(Expression expr, bool asVoid) {
            var node = (UnaryExpression)expr;

            if (node.Operand == null) {
                CompileParameterExpression(_exceptionForRethrowStack.Peek());
                if (asVoid) {
                    _instructions.EmitRethrowVoid();
                } else {
                    _instructions.EmitRethrow();
                }
            } else {
                Compile(node.Operand);
                if (asVoid) {
                    _instructions.EmitThrowVoid();
                } else {
                    _instructions.EmitThrow();
                }
            }

        }

        // TODO: remove (replace by true fault support)
        private bool EndsWithRethrow(Expression expr) {
            if (expr.NodeType == ExpressionType.Throw) {
                var node = (UnaryExpression)expr;
                return node.Operand == null;
            }

            BlockExpression block = expr as BlockExpression;
            if (block != null) {
                return EndsWithRethrow(block.Expressions[block.Expressions.Count - 1]);
            }
            return false;
        }


        // TODO: remove (replace by true fault support)
        private void CompileAsVoidRemoveRethrow(Expression expr) {
            int stackDepth = _instructions.CurrentStackDepth;

            if (expr.NodeType == ExpressionType.Throw) {
                Debug.Assert(((UnaryExpression)expr).Operand == null);
                return;
            }

            var node = (BlockExpression)expr;
            var end = CompileBlockStart(node);

            CompileAsVoidRemoveRethrow(node.Expressions[node.Expressions.Count - 1]);

            Debug.Assert(stackDepth == _instructions.CurrentStackDepth);

            CompileBlockEnd(end);
        }

        private void CompileTryExpression(Expression expr) {
            var node = (TryExpression)expr;

            BranchLabel end = _instructions.MakeLabel();
            BranchLabel gotoEnd = _instructions.MakeLabel();

            int tryStackDepth = _instructions.CurrentStackDepth;
            int tryStart = _instructions.Count;

            BranchLabel startOfFinally = null;
            if (node.Finally != null) {
                startOfFinally = _instructions.MakeLabel();
                _instructions.EmitEnterTryFinally(startOfFinally);
            }

            PushLabelBlock(LabelScopeKind.Try);
            Compile(node.Body);

            bool hasValue = node.Body.Type != typeof(void);
            int tryEnd = _instructions.Count;

            // handlers jump here:
            _instructions.MarkLabel(gotoEnd);
            _instructions.EmitGoto(end, hasValue, hasValue);
            
            // keep the result on the stack:     
            if (node.Handlers.Count > 0) {
                int handlerContinuationDepth = _instructions.CurrentContinuationsDepth;

                // TODO: emulates faults (replace by true fault support)
                if (node.Finally == null && node.Handlers.Count == 1) {
                    var handler = node.Handlers[0];
                    if (handler.Filter == null && handler.Test == typeof(Exception) && handler.Variable == null) {
                        if (EndsWithRethrow(handler.Body)) {
                            if (hasValue) {
                                _instructions.EmitEnterExceptionHandlerNonVoid();
                            } else {
                                _instructions.EmitEnterExceptionHandlerVoid();
                            }

                            // at this point the stack balance is prepared for the hidden exception variable:
                            int handlerLabel = _instructions.MarkRuntimeLabel();
                            int handlerStart = _instructions.Count;

                            CompileAsVoidRemoveRethrow(handler.Body);
                            _instructions.EmitLeaveFault(hasValue);
                            _instructions.MarkLabel(end);

                            _handlers.Add(new ExceptionHandler(tryStart, tryEnd, handlerLabel, handlerStart, null));
                            PopLabelBlock(LabelScopeKind.Try);
                            return;
                        }
                    }
                }

                foreach (var handler in node.Handlers) {
                    PushLabelBlock(LabelScopeKind.Catch);

                    if (handler.Filter != null) {
                        //PushLabelBlock(LabelScopeKind.Filter);
                        throw new NotImplementedException();
                        //PopLabelBlock(LabelScopeKind.Filter);
                    }

                    var parameter = handler.Variable ?? Expression.Parameter(handler.Test);

                    var local = _locals.DefineLocal(parameter, _instructions.Count);
                    _exceptionForRethrowStack.Push(parameter);

                    // add a stack balancing nop instruction (exception handling pushes the current exception):
                    if (hasValue) {
                        _instructions.EmitEnterExceptionHandlerNonVoid();
                    } else {
                        _instructions.EmitEnterExceptionHandlerVoid();
                    }

                    // at this point the stack balance is prepared for the hidden exception variable:
                    int handlerLabel = _instructions.MarkRuntimeLabel();
                    int handlerStart = _instructions.Count;

                    CompileSetVariable(parameter, true);
                    Compile(handler.Body);

                    _exceptionForRethrowStack.Pop();

                    // keep the value of the body on the stack:
                    Debug.Assert(hasValue == (handler.Body.Type != typeof(void)));
                    _instructions.EmitLeaveExceptionHandler(hasValue, gotoEnd);

                    _handlers.Add(new ExceptionHandler(tryStart, tryEnd, handlerLabel, handlerStart, handler.Test));

                    PopLabelBlock(LabelScopeKind.Catch);
                
                    _locals.UndefineLocal(local, _instructions.Count);
                }

                if (node.Fault != null) {
                    throw new NotImplementedException();
                }
            }
            
            if (node.Finally != null) {
                PushLabelBlock(LabelScopeKind.Finally);

                _instructions.MarkLabel(startOfFinally);
                _instructions.EmitEnterFinally();
                CompileAsVoid(node.Finally);
                _instructions.EmitLeaveFinally();

                PopLabelBlock(LabelScopeKind.Finally);
            }

            _instructions.MarkLabel(end);

            PopLabelBlock(LabelScopeKind.Try);
        }

        private void CompileDynamicExpression(Expression expr) {
            var node = (DynamicExpression)expr;

            foreach (var arg in node.Arguments) {
                Compile(arg);
            }

            _instructions.EmitDynamic(node.DelegateType, node.Binder);
        }

        private void CompileMethodCallExpression(Expression expr) {
            var node = (MethodCallExpression)expr;
            
            if (node.Method == _GetCurrentMethod && node.Object == null && node.Arguments.Count == 0) {
                // If we call GetCurrentMethod, it will expose details of the
                // interpreter's CallInstruction. Instead, we use
                // Interpreter.Run, which logically represents the running
                // method, and will appear in the stack trace of an exception.
                _instructions.EmitLoad(_RunMethod);
                return;
            }

            var parameters = node.Method.GetParameters();

            // TODO:
            // Support pass by reference.
            // Note that LoopCompiler needs to be updated too.

            // force compilation for now:
            if (!CollectionUtils.TrueForAll(parameters, (p) => !p.ParameterType.IsByRef)) {
                _forceCompile = true;
            }

            if (!node.Method.IsStatic) {
                Compile(node.Object);
            }

            foreach (var arg in node.Arguments) {
                Compile(arg);
            }

            _instructions.EmitCall(node.Method, parameters);
        }

        private void CompileNewExpression(Expression expr) {
            var node = (NewExpression)expr;

            if (node.Constructor != null) {
                foreach (var arg in node.Arguments) {
                    this.Compile(arg);
                }
                _instructions.EmitNew(node.Constructor);
            } else {
                Debug.Assert(expr.Type.IsValueType);
                _instructions.EmitDefaultValue(node.Type);
            }
        }

        private void CompileMemberExpression(Expression expr) {
            var node = (MemberExpression)expr;

            var member = node.Member;
            FieldInfo fi = member as FieldInfo;
            if (fi != null) {
                if (fi.IsLiteral) {
                    _instructions.EmitLoad(fi.GetRawConstantValue(), fi.FieldType);
                } else if (fi.IsStatic) {
                    if (fi.IsInitOnly) {
                        _instructions.EmitLoad(fi.GetValue(null), fi.FieldType);
                    } else {
                        _instructions.EmitLoadField(fi);
                    }
                } else {
                    Compile(node.Expression);
                    _instructions.EmitLoadField(fi);
                }
                return;
            }

            PropertyInfo pi = member as PropertyInfo;
            if (pi != null) {
                var method = pi.GetGetMethod(true);
                if (node.Expression != null) {
                    Compile(node.Expression);
                }
                _instructions.EmitCall(method);
                return;
            }


            throw new System.NotImplementedException();
        }

        private void CompileNewArrayExpression(Expression expr) {
            var node = (NewArrayExpression)expr;

            foreach (var arg in node.Expressions) {
                Compile(arg);
            }

            Type elementType = node.Type.GetElementType();
            int rank = node.Expressions.Count;

            if (node.NodeType == ExpressionType.NewArrayInit) {
                _instructions.EmitNewArrayInit(elementType, rank);
            } else if (node.NodeType == ExpressionType.NewArrayBounds) {
                if (rank == 1) {
                    _instructions.EmitNewArray(elementType);
                } else {
                    _instructions.EmitNewArrayBounds(elementType, rank);
                }
            } else {
                throw new System.NotImplementedException();
            }
        }

        class ParameterVisitor : ExpressionVisitor {
            private readonly LightCompiler _compiler;

            /// <summary>
            /// A stack of variables that are defined in nested scopes. We search
            /// this first when resolving a variable in case a nested scope shadows
            /// one of our variable instances.
            /// </summary>
            private readonly Stack<HashSet<ParameterExpression>> _shadowedVars = new Stack<HashSet<ParameterExpression>>();

            public ParameterVisitor(LightCompiler compiler) {
                _compiler = compiler;
            }

            protected override Expression VisitLambda<T>(Expression<T> node) {
                _shadowedVars.Push(new HashSet<ParameterExpression>(node.Parameters));
                try {
                    Visit(node.Body);
                    return node;
                } finally {
                    _shadowedVars.Pop();
                }
            }

            protected override Expression VisitBlock(BlockExpression node) {
                if (node.Variables.Count > 0) {
                    _shadowedVars.Push(new HashSet<ParameterExpression>(node.Variables));
                }
                try {
                    Visit(node.Expressions);
                    return node;
                } finally {
                    if (node.Variables.Count > 0) {
                        _shadowedVars.Pop();
                    }
                }
            }

            protected override CatchBlock VisitCatchBlock(CatchBlock node) {
                if (node.Variable != null) {
                    _shadowedVars.Push(new HashSet<ParameterExpression>(new[] { node.Variable }));
                }
                try {
                    Visit(node.Filter);
                    Visit(node.Body);
                    return node;
                } finally {
                    if (node.Variable != null) {
                        _shadowedVars.Pop();
                    }
                }
            }

            protected override Expression VisitParameter(ParameterExpression node) {
                // Skip variables that are shadowed by a nested scope/lambda
                foreach (HashSet<ParameterExpression> hidden in _shadowedVars) {
                    if (hidden.Contains(node)) {
                        return node;
                    }
                }

                // If we didn't find it, it must exist at a higher level scope
                _compiler.EnsureVariable(node);
                return node;
            }

        }

        private void CompileExtensionExpression(Expression expr) {
            var instructionProvider = expr as IInstructionProvider;
            if (instructionProvider != null) {
                instructionProvider.AddInstructions(this);
                return;
            }

            var skip = expr as Ast.SkipInterpretExpression;
            if (skip != null) {
                new ParameterVisitor(this).Visit(skip);
                return;
            }

            var node = expr as Microsoft.Scripting.Ast.SymbolConstantExpression;
            if (node != null) {
                _instructions.EmitLoad(node.Value);
                return;
            }

            var updateStack = expr as LastFaultingLineExpression;
            if (updateStack != null) {
                var updateStackInstr = new UpdateStackTraceInstruction();
                _instructions.Emit(updateStackInstr);
                _stackTraceUpdates.Add(updateStackInstr);
                return;
            }

            if (expr.CanReduce) {
                Compile(expr.Reduce());
            } else {
                throw new System.NotImplementedException();
            }
        }


        private void CompileDebugInfoExpression(Expression expr) {
            var node = (DebugInfoExpression)expr;
            int start = _instructions.Count;
            var info = new DebugInfo()
            {
                Index = start,
                FileName = node.Document.FileName,
                StartLine = node.StartLine,
                EndLine = node.EndLine,
                IsClear = node.IsClear
            };
            _debugInfos.Add(info);
        }

        private void CompileRuntimeVariablesExpression(Expression expr) {
            // Generates IRuntimeVariables for all requested variables
            var node = (RuntimeVariablesExpression)expr;
            foreach (var variable in node.Variables) {
                EnsureAvailableForClosure(variable);
                CompileGetBoxedVariable(variable);
            }

            _instructions.EmitNewRuntimeVariables(node.Variables.Count);
        }


        private void CompileLambdaExpression(Expression expr) {
            var node = (LambdaExpression)expr;
            var compiler = new LightCompiler(this);
            var creator = compiler.CompileTop(node);

            if (compiler._locals.ClosureVariables != null) {
                foreach (ParameterExpression variable in compiler._locals.ClosureVariables.Keys) {
                    CompileGetBoxedVariable(variable);
                }
            }
            _instructions.EmitCreateDelegate(creator);
        }

        private void CompileCoalesceBinaryExpression(Expression expr) {
            var node = (BinaryExpression)expr;

            if (TypeUtils.IsNullableType(node.Left.Type)) {
                throw new NotImplementedException();
            } else if (node.Conversion != null) {
                throw new NotImplementedException();
            } else {
                var leftNotNull = _instructions.MakeLabel();
                Compile(node.Left);
                _instructions.EmitCoalescingBranch(leftNotNull);
                _instructions.EmitPop();
                Compile(node.Right);
                _instructions.MarkLabel(leftNotNull);
            }
        }

        private void CompileInvocationExpression(Expression expr) {
            var node = (InvocationExpression)expr;

            // TODO: LambdaOperand optimization (see compiler)
            if (typeof(LambdaExpression).IsAssignableFrom(node.Expression.Type)) {
                throw new System.NotImplementedException();
            }

            // TODO: do not create a new Call Expression
            if (PlatformAdaptationLayer.IsCompactFramework) {
                // Workaround for a bug in Compact Framework
                Compile(
                    AstUtils.Convert(
                        Expression.Call(
                            node.Expression,
                            node.Expression.Type.GetMethod("DynamicInvoke"),
                            Expression.NewArrayInit(typeof(object), node.Arguments.Map((e) => AstUtils.Convert(e, typeof(object))))
                        ),
                        node.Type
                    )
                );
            } else {
                CompileMethodCallExpression(Expression.Call(node.Expression, node.Expression.Type.GetMethod("Invoke"), node.Arguments));
            }
        }

        [System.Diagnostics.CodeAnalysis.SuppressMessage("Microsoft.Usage", "CA1801:ReviewUnusedParameters", MessageId = "expr")]
        private void CompileListInitExpression(Expression expr) {
            throw new System.NotImplementedException();
        }

        [System.Diagnostics.CodeAnalysis.SuppressMessage("Microsoft.Usage", "CA1801:ReviewUnusedParameters", MessageId = "expr")]
        private void CompileMemberInitExpression(Expression expr) {
            throw new System.NotImplementedException();
        }

        [System.Diagnostics.CodeAnalysis.SuppressMessage("Microsoft.Usage", "CA1801:ReviewUnusedParameters", MessageId = "expr")]
        private void CompileQuoteUnaryExpression(Expression expr) {
            throw new System.NotImplementedException();
        }

        private void CompileUnboxUnaryExpression(Expression expr) {
            var node = (UnaryExpression)expr;
            // unboxing is a nop:
            Compile(node.Operand);
        }

        private void CompileTypeEqualExpression(Expression expr) {
            Debug.Assert(expr.NodeType == ExpressionType.TypeEqual);
            var node = (TypeBinaryExpression)expr;

            Compile(node.Expression);
            _instructions.EmitLoad(node.TypeOperand);
            _instructions.EmitTypeEquals();
        }

        private void CompileTypeAsExpression(UnaryExpression node) {
            Compile(node.Operand);
            _instructions.EmitTypeAs(node.Type);
        }

        private void CompileTypeIsExpression(Expression expr) {
            Debug.Assert(expr.NodeType == ExpressionType.TypeIs);
            var node = (TypeBinaryExpression)expr;

            Compile(node.Expression);

            // use TypeEqual for sealed types:
            if (node.TypeOperand.IsSealed) {
                _instructions.EmitLoad(node.TypeOperand);
                _instructions.EmitTypeEquals();
            } else {
                _instructions.EmitTypeIs(node.TypeOperand);
            }
        }

        [System.Diagnostics.CodeAnalysis.SuppressMessage("Microsoft.Usage", "CA1801:ReviewUnusedParameters", MessageId = "expr")]
        private void CompileReducibleExpression(Expression expr) {
            throw new System.NotImplementedException();
        }

        internal void Compile(Expression expr, bool asVoid) {
            if (asVoid) {
                CompileAsVoid(expr);
            } else {
                Compile(expr);
            }
        }

        internal void CompileAsVoid(Expression expr) {
            int startingStackDepth = _instructions.CurrentStackDepth;
            switch (expr.NodeType) {
                case ExpressionType.Assign:
                    CompileAssignBinaryExpression(expr, true);
                    break;

                case ExpressionType.Block:
                    CompileBlockExpression(expr, true);
                    break;

                case ExpressionType.Throw:
                    CompileThrowUnaryExpression(expr, true);
                    break;

                case ExpressionType.Constant:
                case ExpressionType.Default:
                case ExpressionType.Parameter:
                    // no-op
                    break;

                default:
                    Compile(expr);
                    if (expr.Type != typeof(void)) {
                        _instructions.EmitPop();
                    }
                    break;
            }
            Debug.Assert(_instructions.CurrentStackDepth == startingStackDepth);
        }

        [System.Diagnostics.CodeAnalysis.SuppressMessage("Microsoft.Maintainability", "CA1502:AvoidExcessiveComplexity")]
        public void Compile(Expression expr) {
            bool pushLabelBlock = TryPushLabelBlock(expr);
            int startingStackDepth = _instructions.CurrentStackDepth;
            switch (expr.NodeType) {
                case ExpressionType.Add: CompileBinaryExpression(expr); break;
                case ExpressionType.AddChecked: CompileBinaryExpression(expr); break;
                case ExpressionType.And: CompileBinaryExpression(expr); break;
                case ExpressionType.AndAlso: CompileAndAlsoBinaryExpression(expr); break;
                case ExpressionType.ArrayLength: CompileUnaryExpression(expr); break;
                case ExpressionType.ArrayIndex: CompileBinaryExpression(expr); break;
                case ExpressionType.Call: CompileMethodCallExpression(expr); break;
                case ExpressionType.Coalesce: CompileCoalesceBinaryExpression(expr); break;
                case ExpressionType.Conditional: CompileConditionalExpression(expr, expr.Type == typeof(void)); break;
                case ExpressionType.Constant: CompileConstantExpression(expr); break;
                case ExpressionType.Convert: CompileConvertUnaryExpression(expr); break;
                case ExpressionType.ConvertChecked: CompileConvertUnaryExpression(expr); break;
                case ExpressionType.Divide: CompileBinaryExpression(expr); break;
                case ExpressionType.Equal: CompileBinaryExpression(expr); break;
                case ExpressionType.ExclusiveOr: CompileBinaryExpression(expr); break;
                case ExpressionType.GreaterThan: CompileBinaryExpression(expr); break;
                case ExpressionType.GreaterThanOrEqual: CompileBinaryExpression(expr); break;
                case ExpressionType.Invoke: CompileInvocationExpression(expr); break;
                case ExpressionType.Lambda: CompileLambdaExpression(expr); break;
                case ExpressionType.LeftShift: CompileBinaryExpression(expr); break;
                case ExpressionType.LessThan: CompileBinaryExpression(expr); break;
                case ExpressionType.LessThanOrEqual: CompileBinaryExpression(expr); break;
                case ExpressionType.ListInit: CompileListInitExpression(expr); break;
                case ExpressionType.MemberAccess: CompileMemberExpression(expr); break;
                case ExpressionType.MemberInit: CompileMemberInitExpression(expr); break;
                case ExpressionType.Modulo: CompileBinaryExpression(expr); break;
                case ExpressionType.Multiply: CompileBinaryExpression(expr); break;
                case ExpressionType.MultiplyChecked: CompileBinaryExpression(expr); break;
                case ExpressionType.Negate: CompileUnaryExpression(expr); break;
                case ExpressionType.UnaryPlus: CompileUnaryExpression(expr); break;
                case ExpressionType.NegateChecked: CompileUnaryExpression(expr); break;
                case ExpressionType.New: CompileNewExpression(expr); break;
                case ExpressionType.NewArrayInit: CompileNewArrayExpression(expr); break;
                case ExpressionType.NewArrayBounds: CompileNewArrayExpression(expr); break;
                case ExpressionType.Not: CompileUnaryExpression(expr); break;
                case ExpressionType.NotEqual: CompileBinaryExpression(expr); break;
                case ExpressionType.Or: CompileBinaryExpression(expr); break;
                case ExpressionType.OrElse: CompileOrElseBinaryExpression(expr); break;
                case ExpressionType.Parameter: CompileParameterExpression(expr); break;
                case ExpressionType.Power: CompileBinaryExpression(expr); break;
                case ExpressionType.Quote: CompileQuoteUnaryExpression(expr); break;
                case ExpressionType.RightShift: CompileBinaryExpression(expr); break;
                case ExpressionType.Subtract: CompileBinaryExpression(expr); break;
                case ExpressionType.SubtractChecked: CompileBinaryExpression(expr); break;
                case ExpressionType.TypeAs: CompileUnaryExpression(expr); break;
                case ExpressionType.TypeIs: CompileTypeIsExpression(expr); break;
                case ExpressionType.Assign: CompileAssignBinaryExpression(expr, expr.Type == typeof(void)); break;
                case ExpressionType.Block: CompileBlockExpression(expr, expr.Type == typeof(void)); break;
                case ExpressionType.DebugInfo: CompileDebugInfoExpression(expr); break;
                case ExpressionType.Decrement: CompileUnaryExpression(expr); break;
                case ExpressionType.Dynamic: CompileDynamicExpression(expr); break;
                case ExpressionType.Default: CompileDefaultExpression(expr); break;
                case ExpressionType.Extension: CompileExtensionExpression(expr); break;
                case ExpressionType.Goto: CompileGotoExpression(expr); break;
                case ExpressionType.Increment: CompileUnaryExpression(expr); break;
                case ExpressionType.Index: CompileIndexExpression(expr); break;
                case ExpressionType.Label: CompileLabelExpression(expr); break;
                case ExpressionType.RuntimeVariables: CompileRuntimeVariablesExpression(expr); break;
                case ExpressionType.Loop: CompileLoopExpression(expr); break;
                case ExpressionType.Switch: CompileSwitchExpression(expr); break;
                case ExpressionType.Throw: CompileThrowUnaryExpression(expr, expr.Type == typeof(void)); break;
                case ExpressionType.Try: CompileTryExpression(expr); break;
                case ExpressionType.Unbox: CompileUnboxUnaryExpression(expr); break;
                case ExpressionType.TypeEqual: CompileTypeEqualExpression(expr); break;
                case ExpressionType.OnesComplement: CompileUnaryExpression(expr); break;
                case ExpressionType.IsTrue: CompileUnaryExpression(expr); break;
                case ExpressionType.IsFalse: CompileUnaryExpression(expr); break;
                case ExpressionType.AddAssign:
                case ExpressionType.AndAssign:
                case ExpressionType.DivideAssign:
                case ExpressionType.ExclusiveOrAssign:
                case ExpressionType.LeftShiftAssign:
                case ExpressionType.ModuloAssign:
                case ExpressionType.MultiplyAssign:
                case ExpressionType.OrAssign:
                case ExpressionType.PowerAssign:
                case ExpressionType.RightShiftAssign:
                case ExpressionType.SubtractAssign:
                case ExpressionType.AddAssignChecked:
                case ExpressionType.MultiplyAssignChecked:
                case ExpressionType.SubtractAssignChecked:
                case ExpressionType.PreIncrementAssign:
                case ExpressionType.PreDecrementAssign:
                case ExpressionType.PostIncrementAssign:
                case ExpressionType.PostDecrementAssign:
                    CompileReducibleExpression(expr); break;
                default: throw Assert.Unreachable;
            };

            if (pushLabelBlock) {
                PopLabelBlock(_labelBlock.Kind);
            }
            Debug.Assert(_instructions.CurrentStackDepth == startingStackDepth + (expr.Type == typeof(void) ? 0 : 1));
        }
    }
}
www.java2v.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.