Source Code Cross Referenced for AffineCRIF.java in  » 6.0-JDK-Modules » Java-Advanced-Imaging » com » sun » media » jai » opimage » Java Source Code / Java DocumentationJava Source Code and Java Documentation

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » 6.0 JDK Modules » Java Advanced Imaging » com.sun.media.jai.opimage 
Source Cross Referenced  Class Diagram Java Document (Java Doc) 


001:        /*
002:         * $RCSfile: AffineCRIF.java,v $
003:         *
004:         * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
005:         *
006:         * Use is subject to license terms.
007:         *
008:         * $Revision: 1.1 $
009:         * $Date: 2005/02/11 04:56:13 $
010:         * $State: Exp $
011:         */
012:        package com.sun.media.jai.opimage;
013:
014:        import java.awt.RenderingHints;
015:        import java.awt.geom.AffineTransform;
016:        import java.awt.image.DataBuffer;
017:        import java.awt.image.MultiPixelPackedSampleModel;
018:        import java.awt.image.RenderedImage;
019:        import java.awt.image.SampleModel;
020:        import java.awt.image.renderable.RenderableImage;
021:        import java.awt.image.renderable.RenderableImageOp;
022:        import java.awt.image.renderable.RenderContext;
023:        import java.awt.image.renderable.ParameterBlock;
024:        import java.awt.image.renderable.RenderedImageFactory;
025:        import javax.media.jai.BorderExtender;
026:        import javax.media.jai.ImageLayout;
027:        import javax.media.jai.Interpolation;
028:        import javax.media.jai.InterpolationBicubic;
029:        import javax.media.jai.InterpolationBicubic2;
030:        import javax.media.jai.InterpolationBilinear;
031:        import javax.media.jai.InterpolationNearest;
032:        import javax.media.jai.InterpolationTable;
033:        import javax.media.jai.PlanarImage;
034:        import javax.media.jai.RenderedOp;
035:        import javax.media.jai.TileCache;
036:        import javax.media.jai.CRIFImpl;
037:        import java.util.Map;
038:        import java.awt.geom.Rectangle2D;
039:        import java.awt.geom.Point2D;
040:
041:        /**
042:         * @since EA4
043:         * @see AffineOpimage, ScaleOpImage
044:         */
045:        public class AffineCRIF extends CRIFImpl {
046:
047:            private static final float TOLERANCE = 0.01F;
048:
049:            /** Constructor. */
050:            public AffineCRIF() {
051:                super ("affine");
052:            }
053:
054:            /**
055:             * Creates an affine operation as an instance of AffineOpImage.
056:             */
057:            public RenderedImage create(ParameterBlock paramBlock,
058:                    RenderingHints renderHints) {
059:                // Get ImageLayout from renderHints if any.
060:                ImageLayout layout = RIFUtil.getImageLayoutHint(renderHints);
061:
062:                // Get TileCache from renderHints if any.
063:                TileCache cache = RIFUtil.getTileCacheHint(renderHints);
064:
065:                // Get BorderExtender from renderHints if any.
066:                BorderExtender extender = RIFUtil
067:                        .getBorderExtenderHint(renderHints);
068:
069:                RenderedImage source = paramBlock.getRenderedSource(0);
070:
071:                Object arg0 = paramBlock.getObjectParameter(0);
072:                AffineTransform transform = (AffineTransform) arg0;
073:
074:                Object arg1 = paramBlock.getObjectParameter(1);
075:                Interpolation interp = (Interpolation) arg1;
076:
077:                double[] backgroundValues = (double[]) paramBlock
078:                        .getObjectParameter(2);
079:
080:                SampleModel sm = source.getSampleModel();
081:                boolean isBinary = (sm instanceof  MultiPixelPackedSampleModel)
082:                        && (sm.getSampleSize(0) == 1)
083:                        && (sm.getDataType() == DataBuffer.TYPE_BYTE
084:                                || sm.getDataType() == DataBuffer.TYPE_USHORT || sm
085:                                .getDataType() == DataBuffer.TYPE_INT);
086:
087:                // Get the affine transform
088:                double tr[];
089:                tr = new double[6];
090:                transform.getMatrix(tr);
091:
092:                //
093:                // Check and see if the affine transform is doing a copy.
094:                // If so call the copy operation.
095:                //
096:                if ((tr[0] == 1.0) && (tr[3] == 1.0) && (tr[2] == 0.0)
097:                        && (tr[1] == 0.0) && (tr[4] == 0.0) && (tr[5] == 0.0)) {
098:                    // It's a copy
099:                    return new CopyOpImage(source, renderHints, layout);
100:                }
101:
102:                //
103:                // Check and see if the affine transform is in fact doing
104:                // a Translate operation. That is a scale by 1 and no rotation.
105:                // In which case call translate. Note that only integer translate
106:                // is applicable. For non-integer translate we'll have to do the
107:                // affine.
108:                // If the hints contain an ImageLayout hint, we can't use 
109:                // TranslateIntOpImage since it isn't capable of dealing with that.
110:                if ((tr[0] == 1.0) && (tr[3] == 1.0) && (tr[2] == 0.0)
111:                        && (tr[1] == 0.0)
112:                        && (Math.abs(tr[4] - (int) tr[4]) < TOLERANCE)
113:                        && (Math.abs(tr[5] - (int) tr[5]) < TOLERANCE)
114:                        && layout == null) {
115:                    // It's a integer translate
116:                    return new TranslateIntOpImage(source, renderHints,
117:                            (int) tr[4], (int) tr[5]);
118:                }
119:
120:                //
121:                // Check and see if the affine transform is in fact doing
122:                // a Scale operation. In which case call Scale which is more
123:                // optimized than Affine.
124:                //
125:                if ((tr[0] > 0.0) && (tr[2] == 0.0) && (tr[1] == 0.0)
126:                        && (tr[3] > 0.0)) {
127:                    // It's a scale
128:                    if (interp instanceof  InterpolationNearest) {
129:                        if (isBinary) {
130:                            return new ScaleNearestBinaryOpImage(source,
131:                                    extender, renderHints, layout,
132:                                    (float) tr[0], (float) tr[3],
133:                                    (float) tr[4], (float) tr[5], interp);
134:                        } else {
135:                            return new ScaleNearestOpImage(source, extender,
136:                                    renderHints, layout, (float) tr[0], // xScale
137:                                    (float) tr[3], // yScale
138:                                    (float) tr[4], // xTrans
139:                                    (float) tr[5], // yTrans
140:                                    interp);
141:                        }
142:                    } else if (interp instanceof  InterpolationBilinear) {
143:                        if (isBinary) {
144:                            return new ScaleBilinearBinaryOpImage(source,
145:                                    extender, renderHints, layout,
146:                                    (float) tr[0], (float) tr[3],
147:                                    (float) tr[4], (float) tr[5], interp);
148:                        } else {
149:
150:                            return new ScaleBilinearOpImage(source, extender,
151:                                    renderHints, layout, (float) tr[0], // xScale
152:                                    (float) tr[3], // yScale
153:                                    (float) tr[4], // xTrans
154:                                    (float) tr[5], // yTrans
155:                                    interp);
156:                        }
157:                    } else if ((interp instanceof  InterpolationBicubic)
158:                            || (interp instanceof  InterpolationBicubic2)) {
159:                        return new ScaleBicubicOpImage(source, extender,
160:                                renderHints, layout, (float) tr[0], // xScale
161:                                (float) tr[3], // yScale
162:                                (float) tr[4], // xTrans
163:                                (float) tr[5], // yTrans
164:                                interp);
165:                    } else {
166:                        return new ScaleGeneralOpImage(source, extender,
167:                                renderHints, layout, (float) tr[0], // xScale
168:                                (float) tr[3], // yScale
169:                                (float) tr[4], // xTrans
170:                                (float) tr[5], // yTrans
171:                                interp);
172:                    }
173:                }
174:
175:                // Have to do Affine
176:                if (interp instanceof  InterpolationNearest) {
177:                    if (isBinary) {
178:                        return new AffineNearestBinaryOpImage(source, extender,
179:                                renderHints, layout, transform, interp,
180:                                backgroundValues);
181:                    } else {
182:                        return new AffineNearestOpImage(source, extender,
183:                                renderHints, layout, transform, interp,
184:                                backgroundValues);
185:                    }
186:                } else if (interp instanceof  InterpolationBilinear) {
187:                    return new AffineBilinearOpImage(source, extender,
188:                            renderHints, layout, transform, interp,
189:                            backgroundValues);
190:                } else if (interp instanceof  InterpolationBicubic) {
191:                    return new AffineBicubicOpImage(source, extender,
192:                            renderHints, layout, transform, interp,
193:                            backgroundValues);
194:                } else if (interp instanceof  InterpolationBicubic2) {
195:                    return new AffineBicubic2OpImage(source, extender,
196:                            renderHints, layout, transform, interp,
197:                            backgroundValues);
198:                } else {
199:                    return new AffineGeneralOpImage(source, extender,
200:                            renderHints, layout, transform, interp,
201:                            backgroundValues);
202:                }
203:
204:            }
205:
206:            /**
207:             * Creates a new instance of <code>AffineOpImage</code>
208:             * in the renderable layer. This method satisfies the
209:             * implementation of CRIF.
210:             */
211:            public RenderedImage create(RenderContext renderContext,
212:                    ParameterBlock paramBlock) {
213:                return paramBlock.getRenderedSource(0);
214:            }
215:
216:            /**
217:             * Maps the output RenderContext into the RenderContext for the ith
218:             * source.
219:             * This method satisfies the implementation of CRIF.
220:             *
221:             * @param i               The index of the source image.
222:             * @param renderContext   The renderContext being applied to the operation.
223:             * @param paramBlock      The ParameterBlock containing the sources
224:             *                        and the translation factors.
225:             * @param image           The RenderableImageOp from which this method
226:             *                        was called.
227:             */
228:            public RenderContext mapRenderContext(int i,
229:                    RenderContext renderContext, ParameterBlock paramBlock,
230:                    RenderableImage image) {
231:                Object arg0 = paramBlock.getObjectParameter(0);
232:                AffineTransform affine = (AffineTransform) arg0;
233:
234:                RenderContext RC = (RenderContext) renderContext.clone();
235:                AffineTransform usr2dev = RC.getTransform();
236:                usr2dev.concatenate(affine);
237:                RC.setTransform(usr2dev);
238:                return RC;
239:            }
240:
241:            /**
242:             * Gets the bounding box for the output of <code>AffineOpImage</code>.
243:             * This method satisfies the implementation of CRIF.
244:             */
245:            public Rectangle2D getBounds2D(ParameterBlock paramBlock) {
246:                RenderableImage source = paramBlock.getRenderableSource(0);
247:                Object arg0 = paramBlock.getObjectParameter(0);
248:                AffineTransform forward_tr = (AffineTransform) arg0;
249:
250:                Object arg1 = paramBlock.getObjectParameter(1);
251:                Interpolation interp = (Interpolation) arg1;
252:
253:                // Get the affine transform
254:                double tr[];
255:                tr = new double[6];
256:                forward_tr.getMatrix(tr);
257:
258:                //
259:                // Check and see if the affine transform is doing a copy.
260:                //
261:                if ((tr[0] == 1.0) && (tr[3] == 1.0) && (tr[2] == 0.0)
262:                        && (tr[1] == 0.0) && (tr[4] == 0.0) && (tr[5] == 0.0)) {
263:                    return new Rectangle2D.Float(source.getMinX(), source
264:                            .getMinY(), source.getWidth(), source.getHeight());
265:                }
266:
267:                //
268:                // Check and see if the affine transform is in fact doing
269:                // a Translate operation.
270:                //
271:                if ((tr[0] == 1.0) && (tr[3] == 1.0) && (tr[2] == 0.0)
272:                        && (tr[1] == 0.0)
273:                        && (Math.abs(tr[4] - (int) tr[4]) < TOLERANCE)
274:                        && (Math.abs(tr[5] - (int) tr[5]) < TOLERANCE)) {
275:                    return new Rectangle2D.Float(source.getMinX()
276:                            + (float) tr[4], source.getMinY() + (float) tr[5],
277:                            source.getWidth(), source.getHeight());
278:                }
279:
280:                //
281:                // Check and see if the affine transform is in fact doing
282:                // a Scale operation.
283:                //
284:                if ((tr[0] > 0.0) && (tr[2] == 0.0) && (tr[1] == 0.0)
285:                        && (tr[3] > 0.0)) {
286:                    // Get the source dimensions
287:                    float x0 = (float) source.getMinX();
288:                    float y0 = (float) source.getMinY();
289:                    float w = (float) source.getWidth();
290:                    float h = (float) source.getHeight();
291:
292:                    // Forward map the source using x0, y0, w and h
293:                    float d_x0 = x0 * (float) tr[0] + (float) tr[4];
294:                    float d_y0 = y0 * (float) tr[3] + (float) tr[5];
295:                    float d_w = w * (float) tr[0];
296:                    float d_h = h * (float) tr[3];
297:
298:                    return new Rectangle2D.Float(d_x0, d_y0, d_w, d_h);
299:                }
300:
301:                // It's an Affine
302:
303:                //
304:                // Get sx0,sy0 coordinates and width & height of the source
305:                //
306:                float sx0 = (float) source.getMinX();
307:                float sy0 = (float) source.getMinY();
308:                float sw = (float) source.getWidth();
309:                float sh = (float) source.getHeight();
310:
311:                //
312:                // The 4 points (clockwise order) are
313:                //      (sx0, sy0),    (sx0+sw, sy0)
314:                //      (sx0, sy0+sh), (sx0+sw, sy0+sh)
315:                //
316:                Point2D[] pts = new Point2D[4];
317:                pts[0] = new Point2D.Float(sx0, sy0);
318:                pts[1] = new Point2D.Float((sx0 + sw), sy0);
319:                pts[2] = new Point2D.Float((sx0 + sw), (sy0 + sh));
320:                pts[3] = new Point2D.Float(sx0, (sy0 + sh));
321:
322:                // Forward map
323:                forward_tr.transform(pts, 0, pts, 0, 4);
324:
325:                float dx0 = Float.MAX_VALUE;
326:                float dy0 = Float.MAX_VALUE;
327:                float dx1 = -Float.MAX_VALUE;
328:                float dy1 = -Float.MAX_VALUE;
329:                for (int i = 0; i < 4; i++) {
330:                    float px = (float) pts[i].getX();
331:                    float py = (float) pts[i].getY();
332:
333:                    dx0 = Math.min(dx0, px);
334:                    dy0 = Math.min(dy0, py);
335:                    dx1 = Math.max(dx1, px);
336:                    dy1 = Math.max(dy1, py);
337:                }
338:
339:                //
340:                // Get the width & height of the resulting bounding box.
341:                // This is set on the layout
342:                //
343:                float lw = dx1 - dx0;
344:                float lh = dy1 - dy0;
345:
346:                return new Rectangle2D.Float(dx0, dy0, lw, lh);
347:            }
348:        }
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.