A thread-safe Set that manages canonical objects : Set « Collections Data Structure « Java

Java
1. 2D Graphics GUI
2. 3D
3. Advanced Graphics
4. Ant
5. Apache Common
6. Chart
7. Class
8. Collections Data Structure
9. Data Type
10. Database SQL JDBC
11. Design Pattern
12. Development Class
13. EJB3
14. Email
15. Event
16. File Input Output
17. Game
18. Generics
19. GWT
20. Hibernate
21. I18N
22. J2EE
23. J2ME
24. JDK 6
25. JNDI LDAP
26. JPA
27. JSP
28. JSTL
29. Language Basics
30. Network Protocol
31. PDF RTF
32. Reflection
33. Regular Expressions
34. Scripting
35. Security
36. Servlets
37. Spring
38. Swing Components
39. Swing JFC
40. SWT JFace Eclipse
41. Threads
42. Tiny Application
43. Velocity
44. Web Services SOA
45. XML
Java Tutorial
Java Source Code / Java Documentation
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java » Collections Data Structure » SetScreenshots 
A thread-safe Set that manages canonical objects
 
/*
 *  Copyright 2004 Brian S O'Neill
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 */

//revised from cojen

import java.lang.ref.Reference;
import java.lang.ref.ReferenceQueue;
import java.lang.ref.WeakReference;

import java.util.AbstractSet;
import java.util.Iterator;
import java.util.NoSuchElementException;

/**
 * A thread-safe Set that manages canonical objects: sharable objects that are
 * typically immutable. Call the {@link #put put} method for supplying the
 * WeakCanonicalSet with candidate canonical instances.
 * <p>
 * Objects that do not customize the hashCode and equals methods don't make
 * sense to be canonicalized because each instance will be considered unique.
 * The object returned from the {@link #put put} method will always be the same
 * as the one passed in.
 *
 @author Brian S O'Neill
 */
public class WeakCanonicalSet<T> extends AbstractSet<T> {
    private Entry<T>[] table;
    private int count;
    private int threshold;
    private final float loadFactor;
    private final ReferenceQueue<T> queue;

    public WeakCanonicalSet() {
        final int initialCapacity = 101;
        final float loadFactor = 0.75f;
        this.loadFactor = loadFactor;
        this.table = new Entry[initialCapacity];
        this.threshold = (int)(initialCapacity * loadFactor);
        this.queue = new ReferenceQueue<T>();
    }

    /**
     * Pass in a candidate canonical object and get a unique instance from this
     * set. The returned object will always be of the same type as that passed
     * in. If the object passed in does not equal any object currently in the
     * set, it will be added to the set, becoming canonical.
     *
     @param obj candidate canonical object; null is also accepted
     */
    public synchronized <U extends T> U put(U obj) {
        // This implementation is based on the WeakIdentityMap.put method.

        if (obj == null) {
            return null;
        }

        Entry<T>[] tab = this.table;

        // Cleanup after cleared References.
        {
            ReferenceQueue queue = this.queue;
            Reference ref;
            while ((ref = queue.poll()) != null) {
                // Since buckets are single-linked, traverse entire list and
                // cleanup all cleared references in it.
                int index = (((Entryref).hash & 0x7fffffff% tab.length;
                for (Entry<T> e = tab[index], prev = null; e != null; e = e.next) {
                    if (e.get() == null) {
                        if (prev != null) {
                            prev.next = e.next;
                        else {
                            tab[index= e.next;
                        }
                        this.count--;
                    else {
                        prev = e;
                    }
                }
            }
        }

        int hash = hashCode(obj);
        int index = (hash & 0x7fffffff% tab.length;

        for (Entry<T> e = tab[index], prev = null; e != null; e = e.next) {
            T iobj = e.get();
            if (iobj == null) {
                // Clean up after a cleared Reference.
                if (prev != null) {
                    prev.next = e.next;
                else {
                    tab[index= e.next;
                }
                this.count--;
            else if (e.hash == hash &&
                       obj.getClass() == iobj.getClass() &&
                       equals(obj, iobj)) {
                // Found canonical instance.
                return (Uiobj;
            else {
                prev = e;
            }
        }

        if (this.count >= this.threshold) {
            // Rehash the table if the threshold is exceeded.
            rehash();
            tab = this.table;
            index = (hash & 0x7fffffff% tab.length;
        }

        // Create a new entry.
        tab[indexnew Entry<T>(obj, this.queue, hash, tab[index]);
        this.count++;
        return obj;
    }

    public Iterator<T> iterator() {
        return new SetIterator();
    }

    public int size() {
        return this.count;
    }

    public synchronized boolean contains(Object obj) {
        if (obj == null) {
            return false;
        }

        Entry<T>[] tab = this.table;
        int hash = hashCode(obj);
        int index = (hash & 0x7fffffff% tab.length;

        for (Entry<T> e = tab[index], prev = null; e != null; e = e.next) {
            Object iobj = e.get();
            if (iobj == null) {
                // Clean up after a cleared Reference.
                if (prev != null) {
                    prev.next = e.next;
                else {
                    tab[index= e.next;
                }
                this.count--;
            else if (e.hash == hash &&
                     obj.getClass() == iobj.getClass() &&
                     equals(obj, iobj)) {
                // Found canonical instance.
                return true;
            else {
                prev = e;
            }
        }

        return false;
    }


    protected int hashCode(Object obj) {
        return obj.hashCode();
    }

    protected boolean equals(Object a, Object b) {
        return a.equals(b);
    }

    private void rehash() {
        int oldCapacity = this.table.length;
        Entry<T>[] tab = this.table;

        int newCapacity = oldCapacity * 1;
        Entry<T>[] newTab = new Entry[newCapacity];

        this.threshold = (int)(newCapacity * this.loadFactor);
        this.table = newTab;

        for (int i = oldCapacity; i-- > 0) {
            for (Entry<T> old = tab[i]; old != null) {
                Entry<T> e = old;
                old = old.next;

                // Only copy entry if it hasn't been cleared.
                if (e.get() == null) {
                    this.count--;
                else {
                    int index = (e.hash & 0x7fffffff% newCapacity;
                    e.next = newTab[index];
                    newTab[index= e;
                }
            }
        }
    }

    private static class Entry<T> extends WeakReference<T> {
        int hash;
        Entry<T> next;

        Entry(T canonical, ReferenceQueue<T> queue, int hash, Entry<T> next) {
            super(canonical, queue);
            this.hash = hash;
            this.next = next;
        }
    }

    private class SetIterator implements Iterator<T> {
        private final Entry<T>[] table;

        private int index;

        // To ensure that the iterator doesn't return cleared entries, keep a
        // hard reference to the canonical object. Its existence will prevent
        // the weak reference from being cleared.
        private T entryCanonical;
        private Entry<T> entry;

        SetIterator() {
            this.table = WeakCanonicalSet.this.table;
            this.index = table.length;
        }

        public boolean hasNext() {
            while (this.entry == null || (this.entryCanonical = this.entry.get()) == null) {
                if (this.entry != null) {
                    // Skip past a cleared Reference.
                    this.entry = this.entry.next;
                else {
                    if (this.index <= 0) {
                        return false;
                    else {
                        this.entry = this.table[--this.index];
                    }
                }
            }

            return true;
        }

        public T next() {
            if (!hasNext()) {
                throw new NoSuchElementException();
            }

            this.entry = this.entry.next;
            return this.entryCanonical;
        }

        public void remove() {
            throw new UnsupportedOperationException();
        }
    }
}

   
  
Related examples in the same category
1. Set, HashSet and TreeSet
2. Things you can do with SetsThings you can do with Sets
3. Set operations: union, intersection, difference, symmetric difference, is subset, is superset
4. Set implementation that use == instead of equals()
5. Set that compares object by identity rather than equality
6. Set union and intersection
7. Set with values iterated in insertion order.
8. Putting your own type in a SetPutting your own type in a Set
9. Use setUse set
10. Another Set demo
11. Set subtractionSet subtraction
12. Working with HashSet and TreeSetWorking with HashSet and TreeSet
13. TreeSet DemoTreeSet Demo
14. Show the union and intersection of two sets
15. Demonstrate the Set interface
16. TreeSet Test
17. Array Set extends AbstractSetArray Set extends AbstractSet
18. Sync Test
19. Set Copy
20. Set and TreeSet
21. Tail
22. What you can do with a TreeSetWhat you can do with a TreeSet
23. Remove all elements from a set
24. Copy all the elements from set2 to set1 (set1 += set2), set1 becomes the union of set1 and set2
25. Remove all the elements in set1 from set2 (set1 -= set2), set1 becomes the asymmetric difference of set1 and set2
26. Get the intersection of set1 and set2, set1 becomes the intersection of set1 and set2
27. Extend AbstractSet to Create Simple Set
28. Int Set
29. One Item Set
30. Small sets whose elements are known to be unique by construction
31. List Set implements Set
32. Converts a char array to a Set
33. Converts a string to a Set
34. Implements the Set interface, backed by a ConcurrentHashMap instance
35. An IdentitySet that uses reference-equality instead of object-equality
36. An implementation of the java.util.Stack based on an ArrayList instead of a Vector, so it is not synchronized to protect against multi-threaded access.
37. A thin wrapper around a List transforming it into a modifiable Set.
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.