PgpSecretKey.cs :  » PDF » iTextSharp » Org » BouncyCastle » Bcpg » OpenPgp » C# / CSharp Open Source

Home
C# / CSharp Open Source
1.2.6.4 mono .net core
2.2.6.4 mono core
3.Aspect Oriented Frameworks
4.Bloggers
5.Build Systems
6.Business Application
7.Charting Reporting Tools
8.Chat Servers
9.Code Coverage Tools
10.Content Management Systems CMS
11.CRM ERP
12.Database
13.Development
14.Email
15.Forum
16.Game
17.GIS
18.GUI
19.IDEs
20.Installers Generators
21.Inversion of Control Dependency Injection
22.Issue Tracking
23.Logging Tools
24.Message
25.Mobile
26.Network Clients
27.Network Servers
28.Office
29.PDF
30.Persistence Frameworks
31.Portals
32.Profilers
33.Project Management
34.RSS RDF
35.Rule Engines
36.Script
37.Search Engines
38.Sound Audio
39.Source Control
40.SQL Clients
41.Template Engines
42.Testing
43.UML
44.Web Frameworks
45.Web Service
46.Web Testing
47.Wiki Engines
48.Windows Presentation Foundation
49.Workflows
50.XML Parsers
C# / C Sharp
C# / C Sharp by API
C# / CSharp Tutorial
C# / CSharp Open Source » PDF » iTextSharp 
iTextSharp » Org » BouncyCastle » Bcpg » OpenPgp » PgpSecretKey.cs
using System;
using System.Collections;
using System.IO;

using Org.BouncyCastle.Crypto;
using Org.BouncyCastle.Crypto.Parameters;
using Org.BouncyCastle.Security;

namespace Org.BouncyCastle.Bcpg.OpenPgp{
  /// <remarks>General class to handle a PGP secret key object.</remarks>
    public class PgpSecretKey
    {
        private readonly SecretKeyPacket  secret;
        private readonly PgpPublicKey    pub;

    internal PgpSecretKey(
      SecretKeyPacket  secret,
      PgpPublicKey  pub)
    {
      this.secret = secret;
      this.pub = pub;
    }

    internal PgpSecretKey(
      PgpPrivateKey        privKey,
      PgpPublicKey        pubKey,
      SymmetricKeyAlgorithmTag  encAlgorithm,
      char[]            passPhrase,
      bool            useSha1,
      SecureRandom        rand)
      : this(privKey, pubKey, encAlgorithm, passPhrase, useSha1, rand, false)
    {
    }

    internal PgpSecretKey(
      PgpPrivateKey        privKey,
      PgpPublicKey        pubKey,
      SymmetricKeyAlgorithmTag  encAlgorithm,
            char[]            passPhrase,
      bool            useSha1,
      SecureRandom        rand,
      bool            isMasterKey)
        {
      BcpgObject secKey;

      this.pub = pubKey;

      switch (pubKey.Algorithm)
            {
        case PublicKeyAlgorithmTag.RsaEncrypt:
        case PublicKeyAlgorithmTag.RsaSign:
        case PublicKeyAlgorithmTag.RsaGeneral:
          RsaPrivateCrtKeyParameters rsK = (RsaPrivateCrtKeyParameters) privKey.Key;
          secKey = new RsaSecretBcpgKey(rsK.Exponent, rsK.P, rsK.Q);
          break;
        case PublicKeyAlgorithmTag.Dsa:
          DsaPrivateKeyParameters dsK = (DsaPrivateKeyParameters) privKey.Key;
          secKey = new DsaSecretBcpgKey(dsK.X);
          break;
        case PublicKeyAlgorithmTag.ElGamalEncrypt:
        case PublicKeyAlgorithmTag.ElGamalGeneral:
          ElGamalPrivateKeyParameters esK = (ElGamalPrivateKeyParameters) privKey.Key;
          secKey = new ElGamalSecretBcpgKey(esK.X);
          break;
        default:
          throw new PgpException("unknown key class");
            }

      try
            {
                MemoryStream bOut = new MemoryStream();
                BcpgOutputStream pOut = new BcpgOutputStream(bOut);

        pOut.WriteObject(secKey);

        byte[] keyData = bOut.ToArray();
        byte[] checksumBytes = Checksum(useSha1, keyData, keyData.Length);

        pOut.Write(checksumBytes);

        byte[] bOutData = bOut.ToArray();

        if (encAlgorithm == SymmetricKeyAlgorithmTag.Null)
        {
          if (isMasterKey)
          {
            this.secret = new SecretKeyPacket(pub.publicPk, encAlgorithm, null, null, bOutData);
          }
          else
          {
            this.secret = new SecretSubkeyPacket(pub.publicPk, encAlgorithm, null, null, bOutData);
          }
        }
        else
                {
          S2k s2k;
          byte[] iv;
          byte[] encData = EncryptKeyData(bOutData, encAlgorithm, passPhrase, rand, out s2k, out iv);

          int s2kUsage = useSha1
            ?  SecretKeyPacket.UsageSha1
            :  SecretKeyPacket.UsageChecksum;

          if (isMasterKey)
          {
            this.secret = new SecretKeyPacket(pub.publicPk, encAlgorithm, s2kUsage, s2k, iv, encData);
          }
          else
          {
            this.secret = new SecretSubkeyPacket(pub.publicPk, encAlgorithm, s2kUsage, s2k, iv, encData);
          }
        }
            }
            catch (PgpException e)
            {
                throw e;
            }
            catch (Exception e)
            {
                throw new PgpException("Exception encrypting key", e);
            }
        }

    public PgpSecretKey(
            int              certificationLevel,
            PgpKeyPair          keyPair,
            string            id,
            SymmetricKeyAlgorithmTag  encAlgorithm,
            char[]            passPhrase,
            PgpSignatureSubpacketVector  hashedPackets,
            PgpSignatureSubpacketVector  unhashedPackets,
            SecureRandom        rand)
      : this(certificationLevel, keyPair, id, encAlgorithm, passPhrase, false, hashedPackets, unhashedPackets, rand)
    {
    }

    public PgpSecretKey(
      int              certificationLevel,
      PgpKeyPair          keyPair,
      string            id,
      SymmetricKeyAlgorithmTag  encAlgorithm,
      char[]            passPhrase,
      bool            useSha1,
      PgpSignatureSubpacketVector  hashedPackets,
      PgpSignatureSubpacketVector  unhashedPackets,
      SecureRandom        rand)
      : this(keyPair.PrivateKey, certifiedPublicKey(certificationLevel, keyPair, id, hashedPackets, unhashedPackets), encAlgorithm, passPhrase, useSha1, rand, true)
    {
    }

    private static PgpPublicKey certifiedPublicKey(
      int              certificationLevel,
      PgpKeyPair          keyPair,
      string            id,
      PgpSignatureSubpacketVector  hashedPackets,
      PgpSignatureSubpacketVector  unhashedPackets)
    {
      PgpSignatureGenerator sGen;
      try
      {
        sGen = new PgpSignatureGenerator(keyPair.PublicKey.Algorithm, HashAlgorithmTag.Sha1);
      }
      catch (Exception e)
      {
        throw new PgpException("Creating signature generator: " + e.Message, e);
      }

      //
      // Generate the certification
      //
      sGen.InitSign(certificationLevel, keyPair.PrivateKey);

      sGen.SetHashedSubpackets(hashedPackets);
      sGen.SetUnhashedSubpackets(unhashedPackets);

      try
            {
        PgpSignature certification = sGen.GenerateCertification(id, keyPair.PublicKey);
                return PgpPublicKey.AddCertification(keyPair.PublicKey, id, certification);
            }
            catch (Exception e)
            {
        throw new PgpException("Exception doing certification: " + e.Message, e);
      }
        }

    public PgpSecretKey(
            int              certificationLevel,
            PublicKeyAlgorithmTag    algorithm,
            AsymmetricKeyParameter    pubKey,
            AsymmetricKeyParameter    privKey,
            DateTime          time,
            string            id,
            SymmetricKeyAlgorithmTag  encAlgorithm,
            char[]            passPhrase,
            PgpSignatureSubpacketVector  hashedPackets,
            PgpSignatureSubpacketVector  unhashedPackets,
            SecureRandom        rand)
            : this(certificationLevel,
                new PgpKeyPair(algorithm, pubKey, privKey, time),
                id, encAlgorithm, passPhrase, hashedPackets, unhashedPackets, rand)
        {
        }

    public PgpSecretKey(
      int              certificationLevel,
      PublicKeyAlgorithmTag    algorithm,
      AsymmetricKeyParameter    pubKey,
      AsymmetricKeyParameter    privKey,
      DateTime          time,
      string            id,
      SymmetricKeyAlgorithmTag  encAlgorithm,
      char[]            passPhrase,
      bool            useSha1,
      PgpSignatureSubpacketVector  hashedPackets,
      PgpSignatureSubpacketVector  unhashedPackets,
      SecureRandom        rand)
      : this(certificationLevel, new PgpKeyPair(algorithm, pubKey, privKey, time), id, encAlgorithm, passPhrase, useSha1, hashedPackets, unhashedPackets, rand)
    {
    }

    /// <summary>
    /// Check if this key has an algorithm type that makes it suitable to use for signing.
    /// </summary>
    /// <remarks>
    /// Note: with version 4 keys KeyFlags subpackets should also be considered when present for
    /// determining the preferred use of the key.
    /// </remarks>
    /// <returns>
    /// <c>true</c> if this key algorithm is suitable for use with signing.
    /// </returns>
    public bool IsSigningKey
        {
      get
      {
        switch (pub.Algorithm)
        {
          case PublicKeyAlgorithmTag.RsaGeneral:
          case PublicKeyAlgorithmTag.RsaSign:
          case PublicKeyAlgorithmTag.Dsa:
          case PublicKeyAlgorithmTag.ECDsa:
          case PublicKeyAlgorithmTag.ElGamalGeneral:
            return true;
          default:
            return false;
        }
      }
        }

    /// <summary>True, if this is a master key.</summary>
        public bool IsMasterKey
    {
      get { return pub.IsMasterKey; }
        }

    /// <summary>The algorithm the key is encrypted with.</summary>
        public SymmetricKeyAlgorithmTag KeyEncryptionAlgorithm
        {
      get { return secret.EncAlgorithm; }
        }

    /// <summary>The key ID of the public key associated with this key.</summary>
        public long KeyId
        {
            get { return pub.KeyId; }
        }

    /// <summary>The public key associated with this key.</summary>
        public PgpPublicKey PublicKey
        {
      get { return pub; }
        }

    /// <summary>Allows enumeration of any user IDs associated with the key.</summary>
    /// <returns>An <c>IEnumerable</c> of <c>string</c> objects.</returns>
        public IEnumerable UserIds
        {
      get { return pub.GetUserIds(); }
        }

    /// <summary>Allows enumeration of any user attribute vectors associated with the key.</summary>
    /// <returns>An <c>IEnumerable</c> of <c>string</c> objects.</returns>
        public IEnumerable UserAttributes
        {
      get { return pub.GetUserAttributes(); }
        }

    private byte[] ExtractKeyData(
            char[] passPhrase)
        {
            SymmetricKeyAlgorithmTag alg = secret.EncAlgorithm;
      byte[] encData = secret.GetSecretKeyData();

      if (alg == SymmetricKeyAlgorithmTag.Null)
        return encData;

      byte[] data;
      IBufferedCipher c = null;
      try
      {
        string cName = PgpUtilities.GetSymmetricCipherName(alg);
        c = CipherUtilities.GetCipher(cName + "/CFB/NoPadding");
      }
      catch (Exception e)
      {
        throw new PgpException("Exception creating cipher", e);
      }

      // TODO Factor this block out as 'encryptData'
      try
            {
        KeyParameter key = PgpUtilities.MakeKeyFromPassPhrase(secret.EncAlgorithm, secret.S2k, passPhrase);
        byte[] iv = secret.GetIV();

        if (secret.PublicKeyPacket.Version == 4)
                {
          c.Init(false, new ParametersWithIV(key, iv));

          data = c.DoFinal(encData);

          bool useSha1 = secret.S2kUsage == SecretKeyPacket.UsageSha1;
          byte[] check = Checksum(useSha1, data, (useSha1) ? data.Length - 20 : data.Length - 2);

          for (int i = 0; i != check.Length; i++)
          {
            if (check[i] != data[data.Length - check.Length + i])
            {
              throw new PgpException("Checksum mismatch at " + i + " of " + check.Length);
            }
          }
        }
                else // version 2 or 3, RSA only.
                {
          data = new byte[encData.Length];

          //
                    // read in the four numbers
                    //
                    int pos = 0;

          for (int i = 0; i != 4; i++)
                    {
                        c.Init(false, new ParametersWithIV(key, iv));

            int encLen = (((encData[pos] << 8) | (encData[pos + 1] & 0xff)) + 7) / 8;

            data[pos] = encData[pos];
            data[pos + 1] = encData[pos + 1];
            pos += 2;

            c.DoFinal(encData, pos, encLen, data, pos);
            pos += encLen;

            if (i != 3)
                        {
                            Array.Copy(encData, pos - iv.Length, iv, 0, iv.Length);
                        }
                    }

          //
                    // verify Checksum
                    //
          int cs = ((encData[pos] << 8) & 0xff00) | (encData[pos + 1] & 0xff);
                    int calcCs = 0;
                    for (int j=0; j < data.Length-2; j++)
                    {
                        calcCs += data[j] & 0xff;
                    }

          calcCs &= 0xffff;
                    if (calcCs != cs)
                    {
                        throw new PgpException("Checksum mismatch: passphrase wrong, expected "
              + cs.ToString("X")
              + " found " + calcCs.ToString("X"));
                    }
                }

        return data;
            }
            catch (PgpException e)
            {
                throw e;
            }
            catch (Exception e)
            {
                throw new PgpException("Exception decrypting key", e);
            }
        }

    /// <summary>Extract a <c>PgpPrivateKey</c> from this secret key's encrypted contents.</summary>
        public PgpPrivateKey ExtractPrivateKey(
            char[] passPhrase)
        {
      byte[] secKeyData = secret.GetSecretKeyData();
            if (secKeyData == null || secKeyData.Length < 1)
                return null;

      PublicKeyPacket pubPk = secret.PublicKeyPacket;
            try
            {
                byte[] data = ExtractKeyData(passPhrase);
                BcpgInputStream bcpgIn = BcpgInputStream.Wrap(new MemoryStream(data, false));
                AsymmetricKeyParameter privateKey;
                switch (pubPk.Algorithm)
                {
                case PublicKeyAlgorithmTag.RsaEncrypt:
                case PublicKeyAlgorithmTag.RsaGeneral:
                case PublicKeyAlgorithmTag.RsaSign:
                    RsaPublicBcpgKey rsaPub = (RsaPublicBcpgKey)pubPk.Key;
                    RsaSecretBcpgKey rsaPriv = new RsaSecretBcpgKey(bcpgIn);
                    RsaPrivateCrtKeyParameters rsaPrivSpec = new RsaPrivateCrtKeyParameters(
                        rsaPriv.Modulus,
                        rsaPub.PublicExponent,
                        rsaPriv.PrivateExponent,
                        rsaPriv.PrimeP,
                        rsaPriv.PrimeQ,
                        rsaPriv.PrimeExponentP,
                        rsaPriv.PrimeExponentQ,
                        rsaPriv.CrtCoefficient);
                    privateKey = rsaPrivSpec;
                    break;
                case PublicKeyAlgorithmTag.Dsa:
                    DsaPublicBcpgKey dsaPub = (DsaPublicBcpgKey)pubPk.Key;
                    DsaSecretBcpgKey dsaPriv = new DsaSecretBcpgKey(bcpgIn);
                    DsaParameters dsaParams = new DsaParameters(dsaPub.P, dsaPub.Q, dsaPub.G);
                    privateKey = new DsaPrivateKeyParameters(dsaPriv.X, dsaParams);
                    break;
                case PublicKeyAlgorithmTag.ElGamalEncrypt:
                case PublicKeyAlgorithmTag.ElGamalGeneral:
                    ElGamalPublicBcpgKey elPub = (ElGamalPublicBcpgKey)pubPk.Key;
                    ElGamalSecretBcpgKey elPriv = new ElGamalSecretBcpgKey(bcpgIn);
                    ElGamalParameters elParams = new ElGamalParameters(elPub.P, elPub.G);
                    privateKey = new ElGamalPrivateKeyParameters(elPriv.X, elParams);
                    break;
                default:
                    throw new PgpException("unknown public key algorithm encountered");
                }

        return new PgpPrivateKey(privateKey, KeyId);
            }
            catch (PgpException e)
            {
                throw e;
            }
            catch (Exception e)
            {
                throw new PgpException("Exception constructing key", e);
            }
        }

    private static byte[] Checksum(
      bool  useSha1,
      byte[]  bytes,
      int    length)
    {
      if (useSha1)
      {
        try
        {
          IDigest dig = DigestUtilities.GetDigest("SHA1");
          dig.BlockUpdate(bytes, 0, length);
          return DigestUtilities.DoFinal(dig);
        }
        //catch (NoSuchAlgorithmException e)
        catch (Exception e)
        {
          throw new PgpException("Can't find SHA-1", e);
        }
      }
      else
      {
        int Checksum = 0;
        for (int i = 0; i != length; i++)
        {
          Checksum += bytes[i];
        }

        return new byte[] { (byte)(Checksum >> 8), (byte)Checksum };
      }
    }

    public byte[] GetEncoded()
        {
            MemoryStream bOut = new MemoryStream();
            Encode(bOut);
            return bOut.ToArray();
        }

    public void Encode(
            Stream outStr)
        {
            BcpgOutputStream bcpgOut = BcpgOutputStream.Wrap(outStr);

      bcpgOut.WritePacket(secret);
            if (pub.trustPk != null)
            {
                bcpgOut.WritePacket(pub.trustPk);
            }

      if (pub.subSigs == null) // is not a sub key
            {
        foreach (PgpSignature keySig in pub.keySigs)
        {
          keySig.Encode(bcpgOut);
                }

        for (int i = 0; i != pub.ids.Count; i++)
                {
          object pubID = pub.ids[i];
                    if (pubID is string)
                    {
                        string id = (string) pubID;
                        bcpgOut.WritePacket(new UserIdPacket(id));
                    }
                    else
                    {
                        PgpUserAttributeSubpacketVector v = (PgpUserAttributeSubpacketVector) pubID;
                        bcpgOut.WritePacket(new UserAttributePacket(v.ToSubpacketArray()));
                    }

          if (pub.idTrusts[i] != null)
                    {
                        bcpgOut.WritePacket((ContainedPacket)pub.idTrusts[i]);
                    }

          foreach (PgpSignature sig in (ArrayList) pub.idSigs[i])
          {
            sig.Encode(bcpgOut);
                    }
                }
            }
            else
            {
        foreach (PgpSignature subSig in pub.subSigs)
        {
          subSig.Encode(bcpgOut);
                }
            }

      // TODO Check that this is right/necessary
      //bcpgOut.Finish();
        }

    /// <summary>
    /// Return a copy of the passed in secret key, encrypted using a new password
    /// and the passed in algorithm.
    /// </summary>
    /// <param name="key">The PgpSecretKey to be copied.</param>
    /// <param name="oldPassPhrase">The current password for the key.</param>
    /// <param name="newPassPhrase">The new password for the key.</param>
    /// <param name="newEncAlgorithm">The algorithm to be used for the encryption.</param>
    /// <param name="rand">Source of randomness.</param>
        public static PgpSecretKey CopyWithNewPassword(
            PgpSecretKey        key,
            char[]            oldPassPhrase,
            char[]            newPassPhrase,
            SymmetricKeyAlgorithmTag  newEncAlgorithm,
            SecureRandom        rand)
        {
            byte[]  rawKeyData = key.ExtractKeyData(oldPassPhrase);
      int    s2kUsage = key.secret.S2kUsage;
      byte[]  iv = null;
            S2k    s2k = null;
            byte[]  keyData;

      if (newEncAlgorithm == SymmetricKeyAlgorithmTag.Null)
            {
        s2kUsage = SecretKeyPacket.UsageNone;
        if (key.secret.S2kUsage == SecretKeyPacket.UsageSha1)   // SHA-1 hash, need to rewrite Checksum
        {
          keyData = new byte[rawKeyData.Length - 18];

          Array.Copy(rawKeyData, 0, keyData, 0, keyData.Length - 2);

          byte[] check = Checksum(false, keyData, keyData.Length - 2);

          keyData[keyData.Length - 2] = check[0];
          keyData[keyData.Length - 1] = check[1];
        }
        else
        {
          keyData = rawKeyData;
        }
      }
            else
            {
                try
                {
          keyData = EncryptKeyData(rawKeyData, newEncAlgorithm, newPassPhrase, rand, out s2k, out iv);
                }
                catch (PgpException e)
                {
                    throw e;
                }
                catch (Exception e)
                {
                    throw new PgpException("Exception encrypting key", e);
                }
            }

      SecretKeyPacket secret;
            if (key.secret is SecretSubkeyPacket)
            {
                secret = new SecretSubkeyPacket(key.secret.PublicKeyPacket,
          newEncAlgorithm, s2kUsage, s2k, iv, keyData);
            }
            else
            {
                secret = new SecretKeyPacket(key.secret.PublicKeyPacket,
                  newEncAlgorithm, s2kUsage, s2k, iv, keyData);
            }

      return new PgpSecretKey(secret, key.pub);
        }

    /// <summary>Replace the passed the public key on the passed in secret key.</summary>
    /// <param name="secretKey">Secret key to change.</param>
    /// <param name="publicKey">New public key.</param>
    /// <returns>A new secret key.</returns>
    /// <exception cref="ArgumentException">If KeyId's do not match.</exception>
    public static PgpSecretKey ReplacePublicKey(
      PgpSecretKey  secretKey,
      PgpPublicKey  publicKey)
    {
      if (publicKey.KeyId != secretKey.KeyId)
        throw new ArgumentException("KeyId's do not match");

      return new PgpSecretKey(secretKey.secret, publicKey);
    }

    private static byte[] EncryptKeyData(
      byte[]            rawKeyData, 
      SymmetricKeyAlgorithmTag  encAlgorithm,
      char[]            passPhrase,
      SecureRandom        random,
      out S2k            s2k,
      out byte[]          iv)
    {
      IBufferedCipher c;
      try
      {
        string cName = PgpUtilities.GetSymmetricCipherName(encAlgorithm);
        c = CipherUtilities.GetCipher(cName + "/CFB/NoPadding");
      }
      catch (Exception e)
      {
        throw new PgpException("Exception creating cipher", e);
      }

      byte[] s2kIV = new byte[8];
      random.NextBytes(s2kIV);
      s2k = new S2k(HashAlgorithmTag.Sha1, s2kIV, 0x60);

      KeyParameter kp = PgpUtilities.MakeKeyFromPassPhrase(encAlgorithm, s2k, passPhrase);

      iv = new byte[c.GetBlockSize()];
      random.NextBytes(iv);

      c.Init(true, new ParametersWithRandom(new ParametersWithIV(kp, iv), random));

      return c.DoFinal(rawKeyData);
    }
    }
}
www.java2v.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.